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Abstract

We model the unidentified aerial phenomena observed in France
during the last 60 years as a spatial point pattern. We use some public
information such as population density, rate of moisture or presence of
airports to model the intensity of the unidentified aerial phenomena.
Spatial exploratory data analysis is a first approach to appreciate the
link between the intensity of the unidentified aerial phenomena and
the covariates. We then fit an inhomogeneous spatial Poisson process
model with covariates. We find that the significant variables are the
population density, the presence of the factories with a nuclear risk
and contaminated land, and the rate of moisture. The analysis of the
residuals shows that some parts of France (the Belgian border, the
tip of Britany, some parts in the South-East, the Picardie and Haute-
Normandie regions, the Loiret and Corrèze departments) present a
high value of local intensity which are not explained by our model.

Keywords: Spatial point pattern analysis; Inhomogeneous spatial Poisson
processes with covariates; Unidentified aerial phenomena in France; Kernel
smoothed intensity

1 Introduction

An Unidentified Aerospace Phenomenon (UAP) (in French “Phénomène
Aérospatial Non identifié”), correspond to a phenomena that does not cur-
rently find legitimate explanations, most often due to a lack of information,
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but also, in rarer cases, due to our actual limitations in terms of scientific
knowledge.

In France, once a person has been a witness to a UAP, she or he has the
possibility to report at the Gendarmerie The witness is asked to fill in a de-
tailed survey to provide information such as date, time, place, duration, ori-
entation, shape, size, trajectory, witness’ distance to the phenomenon, etc.
The investigation is then handed over to the GEIPAN (http://www.geipan.fr/),
a unit of the French Space Agency CNES, whose main mission is to vali-
date the information provided by the witness and to determine the nature
of the UAP. In addition, the GEIPAN classifies each UAP into 4 categories
A/B/C/D, forming a kind of scale, which goes from perfectly known and
determined (A) to unknown and undetermined (D), after investigation.

It should be noted that even today, 19.5% of UAPs remain undetermined
after investigation which is frustrating of course for both the witness and
the scientist.

1.1 A new strategy to constrain the space of hypothesis

After over 50 years of lack of progress in the field of Unidentified Aerospace
Phenomena, we decided to test new ways of analysis, as well as an innovative
approach, based on a global analysis, so as not to be dependent on isolated
testimonies. This approach stems from a simple observation: Aerospace
Phenomena, whatever they are, are only the products of two origins:

• a. endogenous phenomena, created within the observed environment,
when favorable local conditions allow the emergence of a “rare” phe-
nomenon (the level of scarcity is subjective to the observer)

• b. exogenous phenomena, created outside of the observed environ-
ment. Which can in turn be divided into two categories:

– b1. phenomena which come in the environment because of lo-
cal conditions (a local attractor). This is especially relevant if
this phenomenon (which can be regarded as a complex system)
remains durably in relation with the environment in which it is
observed.

– b2. phenomena which cross the environment in a “forced” way.
An interaction with the environment is an unintended conse-
quence.

Since environmental variables (which cover environmental resources) are
likely to be involved in the explanation of many phenomena, our strategy has
been to seek environmental variables that could correlate with the presence
of UAPs. In this way, we want to reduce the space of possible explanations
for Unidentified Aerospace Phenomena and also propose new areas to think
about.
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Figure 1: Endogenous and exogenous UAP in relation with the observed
environment.

1.2 Selecting variables

This bring us to consider two categories of variables:

• Variables which are involved in environmental characterization, includ-
ing, on the one hand, those of anthropogenic nature, signing human
activity, and on the other, those of biological nature, signing natural
ecosystems.

• Variables of systemic nature, that could significantly and permanently
alter the environment.

The table 1 summarizes the covariates we have selected for our analysis:

Covariates environmental characterization systemic risks

Anthropogenic Density of population Number of nuclear sites*
Number of airports Number of polluted sites*

Percentage of wetlands
Environmental Percentage of forests N/A**

Sunshine

Table 1: * Please note that we are in the range of risks conventionally
named “Nuclear, Biological, and Chemical” (NBC) ** Within the natural
hazard range we did not test: seismic risks, floods and hydrogeological risks,
volcanic hazards and forest fires. These could be added in future studies.

Afterward, we also decided to use UAP As (identified phenomena) as
a covariate. Our hypothesis is that, if, in some areas, the number of testi-
monies relies on socio-psychological characteristics (eg. some people will talk
easily while others dare not talk), then the variation of testimonies should
also be reflected in the number of registered UAPs, and therefore we should
observe a certain level of correlation between UAPs A/B/C/D. In that sense,
using UAP As as a covariate may help us determine whether an abnormal
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variation of UAP Ds is explained by socio-psychological resistances or on
the contrary by socio-psychological openness.

1.3 Geographical and historical scope of our study

An UAP may have been observed by several persons. In that case, the lo-
calization of the phenomenon is given by the centroid of the convex hull of
the points of observation. If the greatest distance of the centroid from the
vertices is morer than 20 kilometers, the UAP will be excluded from the
study because of the lack of accuracy of the coordinates (representing less
than 8.1% of the cases of our database). From 1951 to 2013, 1969 UAPs
have been observed in metropolitan France (most of the data are available at
http://www.cnes-geipan.fr/fileadmin/documents/Export_etudedecas.csv).

Our study does not include those UAPs observed in Corsica or over the
Ocean or the Mediterranean sea so as to facilitate the analysis of the spatial
point pattern in a connex window. All 1969 UAPs have been represented
by department in the left panel of Fig. 2. The administrative boundary has
been downloaded at http://www.gadm.org/. We first note that the inten-
sity of the UAP is not homogeneous in space. In our case, the departments
of the North tend to report at large number of UAPs, and so do the depart-
ments whose main city is a metropolitan area (Bouches-du Rhône, Gironde,
Isère). The variance of the number of inhabitants per department is large
and for that reason, we represent in the right panel of Fig. 2 the UAP counts
for 100 000 inhabitants (We use the population count for 1990. The official
statistics about the population in France are given by the French national
statistical institute INSEE at http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=e
The right hand side map is not uniformly colored which indicates that the
density of the population does not alone explain the intensity of the UAPs.

The main idea of this paper is to find out whether some of the above-
mentioned covariates can explain the intensity of the UAPs. However, we
are not considering all the categories of UAPs but only those UAPs whose
nature has not been determined: they are internationally known as UFOs
(see Section 2). The data used to construct the covariates are provided by
different national French statistics services. Extensive work was conducted
for aggregating the data, and is described in Section 3. Section 4 will present
the main results of the modeling. For this study, we used the statistical
software R (R Development Core Team, 2015) and mainly functions from
the spatstat package (Baddeley and Turner, 2005).
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Figure 2: Locations of the 1969 UAPs observed in France from 1951 to 2013
(source: GEIPAN and INSEE).

2 Descriptive statistics of the unidentified aerial

phenomena

2.1 Definition and nature of unidentified aerial phenomena

The classification of the UAPs made by the GEIPAN investigators as rep-
resented in Fig. 3 is as follows:

• UAP As: the case has been explained unambiguously (237 observa-
tions - 12% of the sample),

• UAP Bs: the case is probably identified (581 observations - 29.5% of
the sample),

• UAP Cs: the observation is non-identifiable because of the lack of data
(770 observations - 39% of the sample),

• UAP Ds: the observation is non-identifiable (381 observations - 19.5%
of the sample).

The reasons for classifying a phenomenon as a UAP A or a UAP B can
be: observation of a star, observation of the passage of Thai lanterns, ob-
servation of a re-entry, observation of an airplane during landing, etc. UAP
Cs essentially correspond to the phenomena which have been observed by
only a few witnesses (80% of UAP C cases have been observed by only one
or two witnesses). The UAP Ds have been subdivided into two categories
(see http://www.geipan.fr/index.php?id=201), but we will not take this
into account in this study. The distribution of the UAPs has evolved over
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A B

C D

Figure 3: Locations of the UAPs according to the GEIPAN classification.
Each UAP is located at the centroid of the commune where the UAP was
observed.

Period 50-60 60-70 70-80 80-90 90-00 00-10 10-20
UAP D / Total UAP 11/34 9/32 149/691 105/422 80/325 23/306 4/159

Proportion 0.32 0.28 0.22 0.25 0.25 0.08 0.03

Table 2: Conditional distribution of the UAP D depending on the period
of observation. The table has been generated with the cases for which the
date of the phenomenon was available.

the years because the information available for older cases is rarely as com-
plete as for recent cases. Thus, Table 2 shows that during the last 10 years,
the proportion of UAPs classified as UAP Ds has substantially decreased.
Moreover, the analysis of a χ2 test indicates that the distribution of the
UAPs depends on the time period (The value of the χ2 is equal to 233, the
null hypothesis of independence between the time and the classification is
rejected with a p-value lower than 0.05).

The complete descriptions of the UAPs are given on the GEIPAN web-
site. Some blogs (see for example http://sceptic-ovni.forumactif.com/forum)
propose alternative explanations (often of astronomical nature) for the UAPs.
However, it is not the purpose of this paper to explain the nature of the
UAPs. We will instead focus on the spatial point pattern analysis of the
UAP Ds and the modeling of the intensity of the UAP Ds by some environ-
mental covariates. The next section presents the kernel smoothed intensity
of the UAP Ds.
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2.2 Kernel smoothed intensity of the UAP Ds

We consider the 381 observed UAP Ds as a realization of a spatial point
pattern {x1, . . . , xn}. The observation window A used corresponds to the
polygon of metropolitan France whose area is equal to 540 461 km2. We use
a Lambert Conic Conformal projection with two standard parallels to facili-
tate the computation of distances in kilometers. Thus, the average intensity
is equal to 0.000705 cases per square kilometer. Complete Spatial Random-
ness (CSR) describes a point process whereby point events occur within a
given study area in a completely random fashion (Diggle, 2003). Fig. 3 sug-
gests that this spatial point pattern does not follow the CSR assumption:
A χ2 test of CSR using a 6 × 6 quadrat counts test gives a value of χ2

equal to 198 with a p-value lower than 0.05. We also computed simulation
envelopes for the Ripley’s K function (Ripley, 1981): the empirical Ripley’s
K function was not included in the envelope obtained with 100 simulations.

We represent on the left panel of Fig. 4, the non-parametric estimation of
a spatially varying intensity as defined by Diggle (2003). Thus the intensity
value at a point u is estimated by:

λ∗(u) =
n∑

i=1

e(xi)k(xi − u)

where k is the Gaussian smoothing kernel and e(xi) is an edge correction fac-
tor. The function density.ppp() of spatstat computes by default the intensity
λ∗ on a square window of 128×128 = 16384 pixels. In our case, the number
of pixels used for computation is equal to 9480 (i.e. 16384 pixels minus the
number of pixels not in A). The size of a pixel is 7.49 × 7.61 kilometers.
To select the smoothing bandwidth for the kernel k, we used indications
given by the functions bw.diggle() and bw.scott(). The first function which
minimizes the mean-square error criterion defined by Diggle (1985), recom-
mends a value of σ equal to 18 kilometers. The second function which uses
Scott’s rule for bandwidth selection for kernel density (Scott, 1992) gives a
value of σ equal to 77 kilometers in the x direction and 100 kilometers in
the y direction. Finally, we choose a value of σ equal to 20 kilometers. Let
u∗ denote the pixel located in the rectangle [791.58, 799.07] × [1992.4, 2000]
kilometers that we will use to illustrate the statistical methods presented in
this paper. Fig. 4 on the right panel represents an example of computation
of λ∗ at pixel u∗. We show that the contribution (ignoring edge correc-
tions) to λ∗ of a spatial point xi 10 kilometers away from u∗ is equal to
k(xi − u) = 0.000241 whereas the contribution of an xi 50 kilometers away
from u∗ is only equal to 0.00001748. Finally, a value of λ∗ equal to 0.00255
at the pixel u∗ means that the expected number of UAPs at u∗ is equal to
7.49 × 7.61 × 0.00251 = 0.1453. It is also important to mention that we
recover the total number of cases by integrating the estimated intensity:
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Figure 4: Non-parametric estimation of a spatially varying intensity for the
UAP Ds with a value of σ = 20. The right panel shows an example of
computation of λ∗ at u∗.

7.49 × 7.61 ×

9480∑

u=1

λ∗(u) = 378

The analysis of the map reveals several local areas with a high con-
centration of the UAPs: first, around Paris and just above (Picardie and
Haute-Normandie regions), we observe two clusters of observations. The
Belgian border also seems to be more exposed as the tip of Brittany. There
seem to be some other clusters in the South of France, it seems that along
the Rhône river and in the Massif Central, there are also some clusters of
UAPs. The next section presents the covariates which we consider to include
for modeling the intensity of the UAPs.

3 Description of the covariates

All the covariates used in this study originate from several official statistical
offices in France. The geographic coordinate systems were not necessarily
the same. The different data are given with a different level of spatial
resolution: communes, spatial point pattern, pixel, etc. For that reason, we
will present in detail the data and the methods used to transform the data
into pixel images which is the best way to make the data compatible.
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3.1 Population density

It seems clear that if the intensity of the UAP is so strong in the metropolitan
area of Paris, this is partly due to a high value of population density in that
area. This information is provided by the INSEE (see http://www.insee.fr/fr/bases-de-donnees/de
It is given in number of inhabitants per square kilometer for each of the
36 208 communes of metropolitan France. The reference date of the census
corresponds to 1990. Thus, we have to assume that the population density
did not significantly vary over the last 60 years. INSEE (2010) takes the
Pays de la Loire region as an example and shows that this hypothesis is
not necessarily realistic; however, the spatial distribution of the population
density is broadly stable. We note {v1, . . . , vn} the population density at lo-
cations {x1, . . . , xn} where the locations are the centroids of the communes
(see http://www.ign.fr/). The smoothed value at a location u is (ignoring
edge corrections):

g(u) =

∑n
i=1 k(u− xi)vi∑n
i=1 k(u− xi)

where k is a Gaussian smoothing kernel, known as the Nadaraya-Watson
smoother (Watson, 1964; Nadaraya, 1989, 1964). The function used to com-
pute this estimator is Smooth.ppp(). Fig. 5 illustrates the use of this func-
tion. We only represent the communes of France belonging to the given
rectangle: [785, 810] × [1985, 2010] kilometers. The population density is
represented by circles located at the centroid of the communes, with a size
proportional to the values vi (Tanimura et al., 2006). On the right panel,
we represent the Nadaraya-Watson smoother with a value of σ equal to 5.
The value of σ returned by the function bw.smoothppp(), which uses a least-
squares cross-validation to select a smoothing bandwidth, is 2. With a value
of σ equal to 2 the map was not smooth enough, so we use σ = 5. We also
represent for different distances, the values of the function k obtained at u∗

with a σ equal to 5.
We represent the smoothed map on Fig. 9. The smoothed value g has

been computed for the 9480 pixels included in the window A. The discretiza-
tion used for representing g corresponds to the one commonly used at IN-
SEE. It seems that the areas with a high population density are those which
contain high numbers of UAP Ds. This observation can be confirmed by Ta-
ble 3 which represents the percentage of observed UAP Ds as a function of
population density. 51.5% of the UAP Ds are in zones of population density
higher than 100 inhabitants per square kilometers whereas their area rep-
resents only 21.8% of the French territory. Finally, a Kolmogorov-Smirnov
test of goodness-of-fit of a Poisson point process model (Baddeley et al.,
2005) has been used with the function kstest.ppm(). The value of the D
statistic is equal to 0.3023 with a p-value strictly lower than 0.05, showing
that the covariate population density is significant to explain the intensity
of the UAPs.

9

http://www.insee.fr/fr/bases-de-donnees/default.asp?page=statistiques-locales.htm
http://www.ign.fr/


Figure 5: Spatial smoothing of the population density observed at the cen-
troids of the communes. The right panel illustrates the values obtained at
u∗ by the function k with a value of σ = 5 for different distances.

Inhabitants/km2 <=50 ]50;100] ]100;500] ]500;2000] ]2000;11224]
Percent of UAP Ds (out of 373) 29.5 19.0 35.1 12.3 4.1
Percent of Pixels (out of 9480) 54.2 24.0 19.1 2.3 0.4

Table 3: Conditional distribution of the UAP Ds as a function of population
density. Only 373 on 381 UAP Ds have been allocated to a class of popula-
tion density because the function Smooth() does not systematically give an
estimation of the density on the border.
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Nuclear sites 0 ]1;5] ]5;10] ]10;13]

Percent of UAP Ds (out of 373) 78.8 19.0 1.6 0.6
Percent of pixels (out of 9480) 87.7 11.9 0.3 0.1

Table 4: Conditional distribution of the UAP Ds as a function of the number
of nuclear sites within a 20-kilometer perimeter.

3.2 Nuclear sites

Fig. 6 on the left panel represents the localization of the sites which present a
nuclear risk in France. The data comes from the website http://www.sortirdunucleaire.org/carte/
There are 102 sites which present characteristics such as: nuclear power
plants, uranium mining residues, storage and disposal of radioactive waste,
etc. Firstly, we compute for each of the 9480 pixels included in the window
A, the number of nuclear sites included in a neighborhood of 20 kilometers
of the pixel. For this, we use the function dnearneigh() of the package spdep
(Bivand et al., 2008). Table 4 indicates that 12.3% of the 9480 pixels have
at least one nuclear site in their neighborhood. This percentage is equal to
21.2% for the pixels which contain UAP Ds. Thus it clearly indicates that
this covariate is potentially linked to the intensity of the UAP Ds.

The idea for creating a pixel image of this data is to compute the kernel
smoothed intensity for each of the 9480 pixels included in window A. The
value of σ has been taken equal to 20 kilometers as for the Kernel smoothed
intensity of the UAP Ds. Fig. 6 on the right panel shows an example for
computing this covariate at u∗. The spatial Kolmogorov-Smirnov test of
CSR rejects the hypothesis of CSR with a D test statistic equal to 0.1299
and a p-value lower than 0.05, showing that the nuclear sites covariate is
significant to explain the intensity of the UAPs individually.

Fig. 9 represents the complete pixel image of the presence of nuclear sites
in the neighborhood in region A.

3.3 Contaminated land

A contaminated site is a site with a perennial or potential risk to human
health or the environment, due to pollution from a former or current activ-
ity. The origin of local pollution is usually industrial. At the end of 2007,
there were 3 985 contaminated sites included in the window A, for which
the French government has undertaken corrective action. The French de-
partment of statistics of the Ministry of ecology, sustainable development,
transportation and housing is responsible of the publication of this data (see
http://basol.environnement.gouv.fr/). The data are given as the num-
ber of contaminated sites per commune (see Fig. 7). Firstly, we will consider
for each pixel u included in window A, the number of contaminated sites in
a neighborhood of 5 kilometers. Table 5 indicates that 49.3% of the UAP
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Figure 6: Locations of the 102 sites which present a nuclear risk in France.
The right panel shows an example of computation for attributing to u∗ the
kernel smoothed intensity with a value of σ equal to 20 kilometers.
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Contaminated sites 0 ]1;5] ]5;10] ]10;20] ]20;58]

Percent of UAP Ds (out of 367) 50.7 31.9 7.0 6.7 3.8
Percent of pixels (out of 9480) 80.3 16.9 1.9 0.7 0.2

Table 5: Conditional distribution of the UAP Ds as a function of the number
of contaminated sites within the perimeter.

Figure 7: Locations of the 3 985 contaminated sites in France. The right
panel shows an example of computation for attributing to u∗ the kernel
smoothed intensity.

Ds are included in pixels where the number of contaminated sites is larger
than 1 whereas this percentage is equal to 19.7% for all the pixels included
in window A. Thus, this covariate is potentially linked to the intensity of
the UAP Ds.

For creating a pixel image of this variable, we have chosen as covariate
the kernel smoothed intensity of the contaminated communes considered
as a point pattern, including the number of contaminated sites as weight.
The value of σ has been taken equal to 5 kilometers, the same as for the
population density covariate. Fig. 7 on the right panel shows an example
of computing of this variable. It is obvious that the covariate thus created
is correlated to population density, but the spatial distribution of these
two covariates are not exactly the same (see Fig. 9). Finally, the Spatial
Kolmogorov-Smirnov test of CSR also rejects the hypothesis of CSR with
a D test statistic equal to 0.3154 (associated to a p-value lower than 0.05),
showing that the contaminated land covariateis significant to explain the
intensity of the UAPs.
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3.4 Other covariates

We also consider including the following variables:

• The percentage of wetlands and water bodies.

• The kernel smoothed intensity of airport installations including run-
ways, buildings and associated land.

• The percentage of land occupied by forests.

• The yearly sum of global irradiation on vertical surface (kWh/m2)
(Suri et al., 2007).

• The kernel smoothed intensity of the UAP As.

The first three variables originate from the Corine Land Cover France 2006
database (Source : European Union SOeS, Corine Land Cover, 2006) and
are given for each of the communes in France. We use these variables for
the following reasons: The areas with a high rate of moisture could be more
exposed to some aerial phenomenon such as a rise of moisture laden air.
An aircraft can be interpreted as an unidentified aerial object under many
circumstances, by both day and night. Thus, it seems interesting to use the
number of airport installations in the neighborhood. Several testimonies
mentioned that the phenomenon was observed at the proximity of some
forest. To compute the pixel images from these 3 variables, we use exactly
the same method as previously.

The yearly sum of global irradiation on vertical surface has been included
in our model because it could be that the areas where the sky is clear of
clouds (hence with a strong value of global irradiation) make the UAP Ds
more visible in the sky. This information was available at the pixel level but
on a different grid (see http://re.jrc.ec.europa.eu/pvgis/download/download.htm).
So, we transform the grid by a spatial smoothing as we did previously for
the population density.

Finally, we also include the kernel smoothed intensity of the UAP As
as covariate in the model. Indeed, if some cases totally explained by the
GEIPAN are located in some concentrated areas, we can suppose that these
areas also contains cases classified as UAP Ds. The value of σ has been
taken equal to 20 kilometers.

Each of the Kolmogorov-Smirnov test reject the hypothesis of CSR (see
Table 6) showing that the covariates are individually significant to explain
the intensity of the UAP Ds. Finally, the covariates are represented on
Fig. 10.
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Covariates Wetlands Airport Forest Sun UAP A
D statistic 0.1902 0.2569 0.089 0.1685 0.1782

p-value 2.155× 10−12 < 10−16 0.004782 8.083× 10−10 6.198× 10−11

Table 6: Kolmogorov-Smirnov test.

4 Model

Using R, Baddeley and Turner (2005) propose to fit the inhomogeneous
Poisson model with the function ppm(). It computes the intensity as a
loglinear function of the covariates Z:

λ(u) = eZ(u)β

where β are the parameters [ β0 · · · β8 ] associated to the covariates Z:

• z0: Constant equal to 1,

• z1: Logarithm of the population density (pop),

• z2: Kernel smoothed intensity of contaminated land (conta),

• z3: Kernel smoothed intensity of the number of nuclear sites (nuclear),

• z4: Percentage of wetlands (wetlands),

• z5: Logarithm of the yearly sum of global irradiation on vertical surface
(sun),

• z6: Kernel smoothed intensity of the airport installations (airport),

• z7: Percentage of land occupied by forests (forests).

• z8: Kernel smoothed intensity of the UAP A (uapA).

We apply the logarithm transformation to the covariates with a heavy
tail distribution. The model may be fitted by the method of maximum
pseudolikelihood by specifying as quadrature scheme the 381 UAPs as data
points and the 9480 pixels as dummy points (Baddeley and Turner, 2000).
The results are given in Table 7.

We removed step by step the least significant variable. We removed
first the covariate uapA (p-value=0.41), then log(sun) (p-value=0.35), then
forests (p-value=0.22), aero (p-value=0.11), and finally wetlands (p-value=0.12).
We finally choose to keep the model presented in Table 8.

To interpret correctly the values of the coefficients βj , we need to cal-

culate the derivative of the estimated function λ̂ at pixel u, with respect to

15



coefficients std p-value

(Intercept) -5.83328 3.81555 0.12634
log(pop) 0.49218 0.06187 < 10−16

conta 2.62161 0.91489 0.00417
nuclear 256.77992 66.66179 0.00012

wetlands 0.02691 0.01484 0.06987
log(sun) -0.53930 0.53930 0.31734
airport 0.09101 0.06677 0.17287
forests 0.00393 0.00274 0.15177
uapA 64.80815 78.93748 0.41166

Table 7: Results of the modeling with all covariates.

coefficients std p-value

(Intercept) -9.67973 0.21282 < 10−16

log(pop) 0.54115 0.04684 < 10−16

conta 2.39716 0.86181 0.00542
nuclear 247.07907 64.55783 0.00013

Table 8: Results of the final modeling.

zj :

∂

∂zj
λ̂(u) =

∂

∂zj
(exp(

8∑

i=0

ziβ̂i))

= β̂j(exp(
8∑

i=0

ziβ̂i))

We see that the partial derivative of λ̂ is positive provided that β̂j is
positive: In this case, the higher the value of zj , the higher the intensity.

Thus, all the covariates in our model have a positive contribution on λ̂
because the coefficients βj are positive.

We now consider the pixel u∗ taken as an example in this article. The
estimated values for the different covariates are given in Table 9. Thus the
estimated intensity λ̂ at pixel u∗ is equal to:

λ̂(u∗) = e−9.679 × 19.83 × 1.09 × 1.17

≃ 0.00158

Baddeley et al. (2005) define the raw residuals for spatial point processes
as:
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pop conta nuclear

zj(u
∗) 5.521 0.036 0.00062

zj(u
∗)× βj 2.99 0.087 0.15

ezj(u
∗)×βj 19.83 1.09 1.17

Table 9: Values of the covariates estimated at the pixel u∗.

Figure 8: Residuals of the model. The 5% highest are shown in red. The
5% lowest are shown in pale yellow.

s(u) = λ∗(u)− λ̂(u)

In the particular case of u∗: s(u∗) = λ∗(u∗)− λ̂(u∗) ≃ 0.00168 − 0.00158 =
1.05 × 10−4.

The map of the Pearson residuals (s(u)/λ̂(u)) is presented in Fig. 8. The
5% areas which have been the most underestimated by the model appear in
red. It corresponds to the Belgian border, the tip of Britany, some parts in
the South-East, the Picardie and Haute-Normandie regions, the Loiret and
Corrèze departments. The 5% areas which have been the most overestimated
essentially correspond to the areas with high values of population density but
without many UAP As at their proximity, such as the large French cities of
Lyon, Bordeaux or Toulouse. The Paris region appears as an outlier because
there are many UAP Ds in that area and finally the cluster of UAP Ds is
bordered by an underestimated area (the city of Paris) and an overestimated
area (the western suburbs of Paris with a lower population density).
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5 Conclusion

When a phenomenon is graded D, it is extremely difficult for the GEIPAN
to convincingly establishits objective existence because the public’s opinion
on this hard-to-tackle subject is often tainted with suspicion. Moreover,
the public can always doubt that any testimony either be a hallucination
or a hoax. For this reason, the purpose of this study was not to bring a
new explanation for the UAP Ds, but to determine whether there is a link
between the locations of the UAP Ds and some covariates provided by the
different French statistics services, and therefore open new, more precise and
qualitative research avenues.

This study, conducted using the tools of the spatial point pattern anal-
ysis, reveals that, the localization of the UAP Ds can indeed partly be
explained by anthropogenic covariates. The link between nuclear activities
and UAP Ds, which has long been suspected and considered, is now for the
first time measured and appears surprisingly high (p-value: 0.00013). We
also discovered a strong relationship between UAP Ds and contaminated
land (p-value: 0.00542) which until now had never been addressed.

These correlations can either be the result of an emerging endogenous
activity,or of exogenous activity. One open hypothesis is that these sensitive
sites may be places of interest because of their connection with environmen-
tal issues. However, we found in the analysis of the residuals that some
clusters of UAP Ds are still not explained by the model. A new track would
be to include some covariates reflecting the level of education of the popu-
lation.

Finally, GEIPAN might be more interested in these clusters by looking
at the data on the sociology and psychology, so information on witnesses
and investigative practices.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

population 2.18 24.66 45.28 102.80 89.12 10380
contaminated land 0 0 0 0.01 0.01 0.67

nuclear sites 0 0 0 0.20 0 13
wetlands 0 0.03 0.22 0.93 0.87 80.48

sun 998 1144 1227 1241 1323 1581
airport 0 0 0 0.08 0.01 14.59
forest 0.09 11.40 24.28 31.48 45.94 99.25

Table 10: Descriptive statistics of the covariates computed on the 9480 pixels
included in A.

A Descriptive statistics

B Mapping of the covariates
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Figure 9: Representation of the covariates transformed as pixel images (1).

Figure 10: Representation of the covariates transformed as pixel images (2).
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