\rightarrow Nightvision-Mode
\rightarrow E-mail \& Alert Manager

Select start of calculation:

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and Timekeeping

 Space Calendar:\square Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
$\square \quad$ NASA TV Guide
Local Telescope
Dealers
\square Public Holidays
\square Saint's Day
Zodiac of today.
\square Change of Zodiac Islamic, Indian,
\square Persian and Hebrew Calendar
$\square \quad$ Week Number Sundials / GPS Time /
\square Current Time Definitions
\square Julian Day Number
$\square \quad$ Sidereal Time
\square Local Magnetic Field

General events

Lunar Occultations (2 months)
$\square \quad$ Planetary Conjunctions
$\square \quad$ Lunar Eclipses
Solar Eclipses and Transits
\square Meteor Showers
\square Planetary Phenomena
$\square \quad$ Lunar Phenomena
\square The Sun
$\square \quad$ Asteroids (6 months)
\square Comets

Earth orbiting satellites
Space Station ISS (1 month)
short duration Flares of
$\square \quad$ Iridium satellites (14
days)

- Passes of other bright satellites (1 day, slow!)

Daily reoccurring events

Graphical night
calendar
\square Sun and Moon
\square Planets
\square Asteroids
\square Comets
\square Meteor Showers
\square Polar Star Transits
$\square \quad$ Weather Balloons

Dimmer and more	
difficult objects	
\quad Jupiter: Great Red	
\square	Spot and satellite
events	
\square	Jupiter's Satellites: position \square Saturn: Satellite events and storms \square
Saturn's Satellites:	
position	
\square	Zodiacal
lightGegenschein	
\square	Variable Stars (3
months)	
\square	Supernovae
\square	Binary Stars
Deep sky objects	
\square	Star chart
\square	Milky Way
\square	Galaxies
\square	Open Star Clusters
\square	Globular Star Clusters
\square	Nebula

Sunday 10 August 2014

Time (24-hour clock)	Object (Link)	Event

38		Observer Site	```Épinonville, France, France WGS84: Lon: +5d04m49.35s Lat: +49d16m37.23s Alt: 285m All times in CET or CEST (during summer)```
5	23h20m00s	\quad USA3-1A $(26905$ $2001-040-A)$ \rightarrow Ground track \rightarrow Star chart	
5	23h20m00s	$\begin{aligned} & \quad \begin{array}{l} \text { Yaogan 16C } \\ (39013 \end{array} \\ & \text { 2012-066-C) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
88	23h20m00s	$\begin{aligned} & \text { Yaogan 16A } \\ & \quad(39011 \\ & \text { 2012-066-A) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(8)	23h20m00s	$\begin{aligned} & \quad \begin{array}{l} \text { Yaogan 16B } \\ (39012 \end{array} \\ & \text { 2012-066-B) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(3)	23h20m00s	- Yaogan 10 LM Rocket (36835 2010-038-B) \rightarrow Ground track \rightarrow Star chart	Appears $\quad 23 \mathrm{~h} 19 \mathrm{~m} 00 \mathrm{~s} \quad 2.9 \mathrm{mag}$ az: $104.6^{\circ} \mathrm{ESE}$ $\mathrm{h}: 42.2^{\circ}$ Culmination $23 \mathrm{~h} 19 \mathrm{~m} 34 \mathrm{~s} \quad 3.0 \mathrm{mag}$ az: $71.4^{\circ} \mathrm{ENE}$
48	23h23m15s	$\begin{aligned} & \quad \begin{array}{l} \text { Yaogan } 12 \\ \quad(37875 \end{array} \\ & \text { 2011-066-B) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(3)	23h25m54s	$\begin{aligned} & \quad \begin{aligned} & \text { ATV-5 } \\ & \text { (40103 } \\ &2014-044-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned} \end{aligned}$	

16 Items/Events: Export to OutlookiCald Print E-mail
Used satellite data set is from 9 August 2014

$\square \quad$ Hide glossary

Glossary:

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north (09 clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the
 observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or $00 \mathrm{~h} 00 \mathrm{m00}$ s. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0 h 00 m is midnight, 12 h : noon, 18h: 6 pm .)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top

This material is ©1998-2014 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers). Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 30 August 2014
Database updated 9 min ago
Current Users: 208
29 days left in ad-free mode

