Intro \mid Callendar \mid Sun \mid Moon \mid Planets \mid Comets \mid Asteroids \mid Meteors Deep-Sky Satellines Astro-Calendar User Profile . Space Weather . Ocean Tides • Meteo • Star chart . Tred Graphical Day\&Night Calendar . Weather Balloons • Islam. Prayer Times \rightarrow Nightvision-Mode
 \rightarrow E-mail \& Alert Manager

Select start of calculation:
Date: $3 \mid$ July $\mid 2015$

Select duration:
30 Minutes

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and
Timekeeping
Space Calendar:

- Birthdays, Rocket Launches
- Local Events (Talks,

Exhibitions)
\square NASA TV Guide

- Local Telescope

Dealers
\square Public Holidays

- Saint's Day
- Zodiac of today. Change of Zodiac Islamic, Indian,
- Persian and Hebrew Calendar
- Week Number

Sundials / GPS Time
(Current Time Definitions

- Julian Day Number
\square Sidereal Time
Local Magnetic Field

General events

Lunar Occultations (2 months)

- Planetary

Conjunctions
\square Lunar Eclipses
\square Solar Eclipses and
Transits

- Meteor Showers
- Planetary

Phenomena
(v) Lunar Phenomena
v The Sun
\square Asteroids (6 months)

- Comets

Earth orbiting satellites
v Space Station ISS (1 month) short duration Flares
(v) of Iridium satellites (14 days)
Passes of other bright
satellites (1 day, slow!)

Daily reoccurring

events

G Graphical night
\square calendar
『 Sun and Moon
\square Planets

- Asteroids
- Comets

Meteor Showers

- Polar Star Transits

Weather Balloons

Dimmer and more	
difficult objects	
	Jupiter: Great Red
\square	Spot and satellite events
\square	Jupiter's Satellites: position
\square	Saturn: Satellite events and storms
\square	Saturn's Satellites: position
\square	Zodiacal light/Gegenschein
\square	Variable Stars (3
months)	
\square	Supernovae
\square	Binary Stars
Deep sky objects	
\square	Star chart
\square	Milky Way
\square	Galaxies
\square	Open Star Clusters
\square	Globular Star Clusters
\square	Nebula

Friday 3 July 2015

Time (24-hour clock)	Object (Link)	Event
5	Observer Site	Couëron, France, France WGS84: Lon: -1d43m43.86s Lat: +47d12m39.60s Alt: 61m All times in CET or CEST (during summer)
(3) 1h00m00s	$\begin{aligned} & \quad \text { Cosmos } 1782 \\ & \quad(16986 \\ & 1986-074-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	
(5) 1h00m	CSun	End astronomical twilight
(3) 1h01m07s	$\begin{aligned} & \text { Helios 1B } \\ & \quad(25977 \\ & \text { 1999-064-A) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	
(3) 1 h 04 m 38 s	$\begin{aligned} & \text { Resurs DK-1 } \\ & \quad(29228 \\ & 2006-021-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	

5	1h08m36s	$\begin{gathered} \text { Landsat } 5 \\ (14780 \\ 1984-021-A) \end{gathered}$ \rightarrow Ground track \rightarrow Star chart	Appears Culmination distance: 5 angular vel Disappears	1h07m22s 1h08m36s .0km hei ity: 0.77 1h14m49s	4.3 mag 4.1 mag ght above /s 10.9 mag	$\begin{aligned} & \text { az: } 184.6^{\circ} \mathrm{S} \\ & \text { az:257.4 } 4^{\circ} \mathrm{WSW} \\ & \text { Earth: } 556.4 \mathrm{~km} \\ & \text { az: } 345.1^{\circ} \mathrm{NNW} \end{aligned}$	```h:41.20 h:71.8 elevation of Sun: -18* horizon```	1
5	1h10m41s	$\begin{aligned} & \quad \text { Roskes } 1689 \\ & \text { Rocket } \\ & (16111 \quad 1985-090-B) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 48 angular vel Disappears	1h10m06s 1h10m41s .8km hei ity: 0.94 1h15m59s	$\begin{aligned} & 3.1 \mathrm{mag} \\ & 3.2 \mathrm{mag} \\ & \text { ght above } \\ & \text { o/s } \\ & 10.0 \mathrm{mag} \end{aligned}$	az:206.3 ${ }^{\circ}$ SSW az:258.6 ${ }^{\circ}$ WSW Earth: 438.7 km az:345.0 $0^{\circ} \mathrm{NNW}$	$\begin{aligned} & h: 51.7^{\circ} \\ & \text { h: } 64.4^{\circ} \\ & \text { elevation of Sun: }-18^{\circ} \end{aligned}$ horizon	
3	1h13m00s	$\begin{aligned} & \quad(20692 \\ & \text { USA 62/NOSS 2-1C } \\ & \text { 1990-050-D) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 7 angular vel Disappears	1h12m03s 1h13m00s .5km hei ity: 0.57 1h20m17s	4.5 mag 4.4mag ght above /s 8.9mag	$\begin{aligned} & \text { az: } 161.9^{\circ} \mathrm{SSE} \\ & \text { az:121.7} 7^{\circ} \mathrm{ESE} \\ & \text { Earth: } 620.3 \mathrm{~km} \\ & \text { az: } 43.1^{\circ} \mathrm{NE} \end{aligned}$	$\begin{aligned} & \mathrm{h}: 40.5^{\circ} \\ & \mathrm{h}: 48.9^{\circ} \\ & \text { elevation of Sun: }-19^{\circ} \end{aligned}$ horizon	
3	1h14m30s	$\begin{aligned} & \quad(20691 \\ & 1990-050-C) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 7 angular vel Disappears	1h13m34s 1h14m30s .8km he ity: 0.57 1h21m47s	4.5 mag 4.4mag ht above s 8.9mag	az:161.1 ${ }^{\circ}$ SSE az:121.70 ESE Earth: 620.2 km az: $43.1^{\circ} \mathrm{NE}$	$\begin{aligned} & \mathrm{h}: 40.9^{\circ} \\ & \mathrm{h}: 48.8^{\circ} \\ & \text { elevation of Sun: }-19^{\circ} \end{aligned}$ horizon	
5	1h16m15s	```Yaogan 1 LM ```	Appears Culmination distance: 58 angular vel Disappears	1h15m41s 1h16m15s .2km hei ity: 0.77 1h21m39s	2.5 mag 2.6 mag ght above /s 9.0mag	$\begin{aligned} & \text { az: } 226.6^{\circ} \mathrm{SW} \\ & \text { az:260.4} \mathrm{W} \\ & \text { Earth: } 442.3 \mathrm{~km} \\ & \text { az: } 342.6^{\circ} \mathrm{NNW} \end{aligned}$	$\begin{aligned} & \mathrm{h}: 41.9^{\circ} \\ & \mathrm{h}: 47.5^{\circ} \\ & \text { elevation of Sun: }-19^{\circ} \\ & \text { horizon } \end{aligned}$	
3	1h17m23s	```ADEOS 2 H2A```	Appears Culmination distance: 1 angular vel Disappears	1h14m10s 1h17m23s 75.5 km he ity: 0.30 1h24m49s	$4.4 m a g$ 4.3mag ight above /s 9.0mag	$\begin{aligned} & \text { az:216.9 }{ }^{\circ} \mathrm{SW} \\ & \text { az:266.2 } \mathrm{W} \\ & \text { e Earth: } 838.4 \mathrm{kr} \\ & \text { az: } 337.5^{\circ} \mathrm{NNW} \end{aligned}$	$\begin{aligned} & \mathrm{h}: 16.9^{\circ} \\ & \mathrm{h}: 29.4^{\circ} \\ & \mathrm{n} \quad \text { elevation of Sun: }-19^{\circ} \end{aligned}$ horizon	
5	1h19m15s	```Okean 3 (21397 1991-039-A) ->Ground track ->Star chart```	Appears at Meridian Culmination distance: 5 angular vel Disappears	1h12m50s 1h18m35s 1h19m15s .5km heigh ity: 0.71 1h20m32s	10.8 mag 4.7 mag 4.0mag ght above /s 4.3 mag	$\begin{aligned} & \text { az: } 350.7^{\circ} \mathrm{N} \\ & \text { az: } 0.0^{\circ} \mathrm{N} \\ & \text { az: } 81.1^{\circ} \mathrm{E} \\ & \text { Earth: } 587.9 \mathrm{~km} \\ & \text { az: } 166.8^{\circ} \mathrm{SSE} \end{aligned}$	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 62.7^{\circ} \\ & \mathrm{h}: 85.4^{\circ} \\ & \text { elevation of Sun: }-19^{\circ} \\ & \mathrm{h}: 43.9^{\circ} \end{aligned}$	
8	1h22m24s	```NOSS 2-1 (E) (20642 1990-050-E) ->Ground track ->Star chart```	Appears Culmination distance: 7 angular vel Disappears	1h21m17s 1h22m24s .7km hei ity: 0.60 1h29m54s	4.5mag 4.4mag ht above /s 9.0mag	$\begin{aligned} & \text { az: } 172.9^{\circ} \mathrm{S} \\ & \text { az:122.9 } \\ & \text { Earth: } 635.3 \mathrm{~km} \\ & \text { az: } 42.5^{\circ} \mathrm{NE} \end{aligned}$	$\begin{aligned} & \mathrm{h}: 41.9^{\circ} \\ & \mathrm{h}: 55.2^{\circ} \\ & \text { elevation of Sun: }-19^{\circ} \\ & \text { horizon } \end{aligned}$	
5	1h25m51s	```Cosmos 2098 Rocket (20775 1990-078-B) ->Ground track ->Star chart```	Appears Culmination distance: 8 angular vel Disappears	1h25m44s 1h25m51s .3km hei ity: 0.55 1h31m20s	4.3 mag 4.4mag ht above s 9.1mag	$\begin{aligned} & \text { az: } 92.1^{\circ} \mathrm{E} \\ & \text { az: } 88.4^{\circ} \mathrm{E} \\ & \text { Earth: } 428.8 \mathrm{~km} \\ & \text { az: } 17.6^{\circ} \mathrm{NNE} \end{aligned}$	```h:27.2 }\mp@subsup{}{}{\circ h:27.30 elevation of Sun: -190 horizon```	
88	1h26m08s	$\begin{aligned} & \quad \text { USA 194/NOSS 3-4A } \\ & \quad(31701 \\ & 2007-027-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 1 -19 ${ }^{\circ}$ angula Disappears	1h16m59s 1h26m08s 7.2 km he velocity: 1h29m28s	9.2 mag 5.1 mag ight above $0.25^{\circ} / \mathrm{s}$ 5.4mag	az:315.8 ${ }^{\circ} \mathrm{NW}$ az:242.8 ${ }^{\circ}$ WSW Earth: 1129.0 az:194.1 SSW	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 40.1^{\circ} \\ & \mathrm{km} \text { elevation of Sun: } \\ & \mathrm{h}: 26.1^{\circ} \end{aligned}$	
5	1h26m15s	$\begin{aligned} & \quad \text { USA 194-2/NOSS } \\ & \begin{array}{l} 3-4 C \\ (31708 \\ \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears Culmination distance: 15 -19́ angula Disappears	1h17m05s 1h26m15s 88.4 km he velocity: 1h29m35s	9.2 mag 5.1 mag ight above $0.26^{\circ} / \mathrm{s}$ 5.4mag	az:315.9 ${ }^{\circ} \mathrm{NW}$ az:242.70 WSW Earth: 1128.6 az:193.7º SSW	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 40.5^{\circ} \\ & \mathrm{km} \text { elevation of Sun: } \\ & \mathrm{h}: 26.2^{\circ} \end{aligned}$	
88	1h27m03s	$\begin{aligned} & \quad \text { Yaogan 9A } \\ & \quad(36413 \\ & 2010-009-A) \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 1 -19 ${ }^{\circ}$ angula at Meridian Disappears	1h18m11s 1h27m03s 44.0 km he velocity: 1h28m17s 1h36m35s	7.9 mag 5.9 mag ight above $0.38^{\circ} / \mathrm{s}$ 6.4 mag 9.5 mag	$\begin{aligned} & \text { az:231.7} 7^{\circ} \mathrm{SW} \\ & \text { az: } 316.2^{\circ} \mathrm{NW} \\ & \text { e Earth: } 1022.11 \\ & \text { az: } 0.0^{\circ} \mathrm{N} \\ & \text { az: } 40.7^{\circ} \mathrm{NE} \end{aligned}$	```horizon h:61.1 km elevation of Sun: h:52.2o horizon```	
0	1h27m14s	$\begin{aligned} & \text { Yaogan 9B } \\ & \quad(36414 \\ & \text { 2010-009-B) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 1 -19 ${ }^{\circ}$ angula at Meridian Disappears	1h18m22s 1h27m14s 33.7 km he velocity: 1h28m32s 1h36m46s	8.0mag 6.0 mag ight above $0.37^{\circ} / \mathrm{s}$ 6.5 mag 9.5 mag	$\begin{aligned} & \text { az:232.9} \mathrm{SW} \\ & \text { az: } 316.8^{\circ} \mathrm{NW} \\ & \text { e Earth: } 1023.61 \\ & \text { az: } 0.0^{\circ} \mathrm{N} \\ & \text { az: } 40.8^{\circ} \mathrm{NE} \end{aligned}$	```horizon h:59.20 elevation of Sun: h:50.3' horizon```	
5	1h27m23s	$\begin{aligned} & \quad \text { Yaogan 9C } \\ & \quad(36415 \\ & \text { 2010-009-C) } \\ & \rightarrow \text { Ground track } \rightarrow \text { Star chart } \end{aligned}$	Appears Culmination distance: 1 -19 ${ }^{\circ}$ angula	1h18m32s 1h27m23s 33.0 km he velocity:	7.9mag 5.9 mag ght above $0.38^{\circ} / \mathrm{s}$	az:231.70 SW az:316.1 NW Earth: 1021.	$\begin{aligned} & \text { horizon } \\ & \mathrm{h}: 61.2^{\circ} \\ & \mathrm{km} \text { elevation of Sun: } \end{aligned}$	

21 Items/Events: Export to Outlook/iCal回 Print \triangle E-mail
Used satellite data set is from 1 July 2015

Glossary:

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

Astronomical Twilight

The astronomical twilight comprises the interval when the central point of the sun's disk is between 12° and 18° below mathematical horizon. The times in CalSky are the moments of beginning/end of the astronomical twilight, i.e., the moments the Sun reaches a depression of 18° below the horizon. If the Sun is below this angle, no brightening of the sky can be observed.
at Meridian
Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north-north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the
 observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or $00 \mathrm{~h} 00 \mathrm{m00s}$. The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0h00m is midnight, 12h: noon, 18h: 6 pm.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

