Intro ©alendar \mid Sun \mid Moon Plonets \mid Comets \mid Asteroids \mid Meteors \mid Deep-Sky \mid Satellites
 대영Astro-Calendar \backslash User Profile • Space Weather • Ocean Tides • Meteo • Weather Balloons • Islam. Prayer Times

Select start of calculation:

Date: $17 \mid$ February 2013 중
Time: $19: 00: 00$ 關誠 Now
Select duration: 2 Hours go.

The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on Earth. We know that you only care for a very few of these events and hence we let you personalize your own Astro-Calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In parentheses are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take significantly longer.

Calendar and	General events	Earth orbiting satellites	Dimmer and more difficult objects
Timekeeping			
\square Birthdays, Rocket		month)	- Spot and satellite
Launches	Conjunctions	short duration	events
Local Events (Talks, Exhibitions)	- Lunar Eclipses Solar Eclipses an	- Flares of Iridium satellites (14 days)	Jupiter's Satellites: position
\square NASA TV Guide	Transits	Passes of other - bright satellites (7	Saturn: Satellite events and storms
Dealers	- Planetary	days, slow!)	\square Saturn's Satellites:
\square Public Holidays	- Phenomena	Daily reoccurring	position
\square Saint's Day	- Lunar Phenomena	\square Sun and Moon	\square Zodiacal light/Gegenschein
\square Zodiac of today.	\square The Sun	- Planets	Variable Stars (3
Change of Zodiac Islamic, Indian,	\square Asteroids (6	■ Asteroids	months)
\square Persian and Hebrew		\square Comets	\square Supernovae
Calendar	Comets	- Meteor Streams	\square Binary Stars
\square Week Number		Polar Star Transits	Deep sky objects
Sundials / GPS		\square Weather Balloons	\square Milky Way
\square Time / Current			\square Galaxies
Time Definitions			\square Open Star Clusters
\square Julian Day Number			Globular Star
\square Sidereal Time			Clusters
\square Local Magnetic			\square Nebula
Field			go.)

Calendar and

 TimekeepingSpace Calendar:
Birthdays, Rocket Launches
Local Events (Talks, Exhibitions)
\square NASA TV Guide
Local Telescope
Dealers
\square Saint's Day
Zodiac of today. Change of Zodiac Islamic, Indian, Persian and Hebrew Calendar

Week Number Sundials / GPS
Time / Current Time Definitions
\square Julian Day Number
\square Sidereal Time
Field

Earth orbiting

Space Station ISS (1 month)
short duration

- Flares of Iridium satellites (14 days) Passes of other bright satellites (7 days, slow!)
Daily reoccurring events
and Moon
- Planets
- Asteroids
- Comets
\checkmark Meteor Streams
\square Polar Star Transits
Deep sky objects
Milky Way
Galaxies
\square Open Star Clusters
Globular Star
Clusters

Sunday 17 February 2013

	Time (24-hour clock)	Object (Link)	Event
(5)		Observer Site	Brest WGS84: Lon: -4d29m09.87s Lat: +48d23m25.42s Alt: 103m All times in UT
(5)	19h00m00s	$\quad \underline{\text { Shijian } 7}$ $\underline{\text { LM Rocket }}$ $\underline{\mathbf{(2 8 7 3 8}} \mathbf{2 0 0 5 - 0 2 4 - B)}$ \rightarrow Ground track \rightarrow Star chart	
68	19.0h	¢Mercury	Magnitude $=-0.3 \mathrm{mag} \quad$ Best seen from 18.0h -19.3 h ($\mathrm{h}_{\mathrm{top}}=13^{\circ}$ at WSW at 18.0 h) (in constellation Aquarius) $\mathrm{RA}=23 \mathrm{~h} 10 \mathrm{~m} 39 \mathrm{~s}$ Dec $=-3^{\circ} 53.2^{\prime} \quad(\mathrm{J} 2000$) Distance $=0.916 \mathrm{AU}$ Elongation $=18^{\circ} \quad$ Phase $\mathrm{k}=46 \%$ Diameter $=7.3^{\prime \prime}$
(3)	19.0h	21 Jupiter	```Magnitude=-2.4mag Best seen from 18.0h - 2.5h (htop=630}\mathrm{ at S at 18.8h) (in constellation Taurus) RA= 4h19m48s Dec=+20\circ54.6' (J2000) Distance=4.853AU Elongation= 980 Diameter=40.6"```
(3)	19h02m58s	$\begin{aligned} & \rightarrow \text { Stound track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
58	19h04m47s	$\frac{\text { Cosmos }}{2227 \text { Rocket }}$ $\frac{(22285}{\underline{1992-093-B)}}$ \rightarrow Ground track \rightarrow Star chart	
68	19.1h	§Uranus	```Magnitude= 5.9mag Best seen from 19.1h -19.5h (htop=180}\mathrm{ at WSW at 19.1h) (in constellation Pisces) RA= 0h23m46s Dec= +149.8' (J2000) Distance=20.834AU Elongation= 370 Diameter=3.4"```
5	19h08m21s	$\frac{(27597}{\text { ADEOS 2 }}$ $2002-056-\mathrm{A})$ \rightarrow Ground track \rightarrow Star chart	
(3)	19 h 10 m	()Sun	Sun 15° below horizon
68	19h12m45s	$\frac{\text { Cosmos }}{1943 \text { Rocket }}$ $\frac{(19120}{1988-039-B)}$ \rightarrow Ground track	

		\rightarrow Star chart	elevation of Sun: -15° angular velocity: $0.32^{\circ} / \mathrm{s}$ Disappears $19 \mathrm{~h} 16 \mathrm{~m} 15 \mathrm{~s} \quad 4.3 \mathrm{mag}$ az: $52.0^{\circ} \mathrm{NE} \mathrm{h}: 17.0^{\circ}$
(5)	19h14m14s	$\frac{\text { Tiangong-1 }}{(37820}$ \rightarrow 2011-053-A) \rightarrow Ground track \rightarrow Star chart	
3	19h16m41s	$\frac{\text { COSMO- }}{\text { SkyMed } 3}$	Flare from unknown Mirror Magnitude= 0.5 mag Azimuth=230.90 SW altitude= 26.1° in constellation Cetus Flare angle=1.840 Flare center line, closest point \rightarrow MapIt: Longitude $=3.614^{\circ} \mathrm{W}$ Latitude $=+48.239^{\circ}$ (WGS84) Distance $=66.6 \mathrm{~km}$ Azimuth=104.30 ESE Satellite above: longitude=14.2 ${ }^{\circ} \mathrm{W}$ latitude $=+41.7^{\circ}$ height above Earth $=628.0 \mathrm{~km}$ distance to satellite=1274.7 km Altitude of Sun=-15.30 This is an experimental flare prediction. Brightness estimate may be unreliable. Please report a successful observation (Object/site coordinates/date/measured time/accuracy/magnitude).
(s)	19h18m11s	$\underline{\underline{U S A}} \frac{\underline{U S A}}{210 / D M S P}$ $\frac{5 \mathrm{D}-3 / \mathrm{F} 18}{(35951}$ $\frac{2009-057-\mathrm{A})}{\rightarrow \text { Ground track }}$ \rightarrow Star chart	
(3)	19h23.8m	¢Mercury	Set Azimuth=264.90, W (in constellation Aquarius)
Cs	19h24m26s	$\frac{(19573}{\underline{1975}}$ $\frac{\text { Cosmos }}{1988-093-A)}$ \rightarrow Ground track \rightarrow Star chart	
6	19h28m	()Sun	End astronomical twilight
Cs	19h33m06s	$\quad \frac{\text { SJ 11-01 }}{\text { LM Rocket }}$$(\mathbf{3 6 0 8 9}$$\mathbf{2 0 0 9 - 0 6 1 - B})$ \rightarrow Ground track\rightarrow Star chart	
(5)	19h35m10s	$\underline{\text { Helios 2A }}$ $\underline{\text { Rocket }}$ $\underline{(28499} \underline{2004-049-H)}$ \rightarrow Ground track	

		\rightarrow Star chart	distance: 699.0 km height above Earth: 698.8 kmelevation of Sun: -18° angular velocity: $0.63^{\circ} / \mathrm{s}$Disappears $\mathbf{1 9 h 4 2 m 1 4 s \quad 7 . 4 m a g ~ a z : 3 4 6 . 3 ^ { \circ }}$ NNW horizon						
(5)	19h50m06s			appears horizon isappears $h: 72.5^{\circ}$	19h44m53s 19h50m06s	7.3 mag 3.2 mag	$\begin{aligned} & \mathrm{az}: 346.9^{\circ} \\ & \mathrm{az}: 308.5^{\circ} \end{aligned}$	$\begin{aligned} & \text { NNW } \\ & \text { NW } \end{aligned}$	
(5)	19h57m05s	$\underline{\text { USA }}$ $\frac{\text { Radar } 2}{(38109}$ $\frac{234 \text { FIA }}{2012-014-A)}$ \rightarrow Ground track \rightarrow Star chart		Appears $h: 39.5^{\circ}$ ulmination h:59.7 ${ }^{\circ}$ distance: 12 elevation at Meridian Disappears	19h54m50s 19h57m05s 27.8 km he Sun: -22 19h57m39s 20h05m53s	4.2 mag 4. Omag ht above angular 4.2 mag 8.9 mag	$\begin{aligned} & \text { az: } 81.5^{\circ} \\ & \text { az: } 22.7^{\circ} \\ & \text { e Earth: } 10 \\ & \text { velocity: } \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 302.5^{\circ} \end{aligned}$	E NNE 86.2 0.35 N WNW	$\begin{aligned} & \mathrm{h}: 57.6^{\circ} \\ & \text { horizon } \\ & \mathrm{h} \end{aligned}$
(3)	19h57m58s	$\frac{\text { Seasat }}{\frac{(10967}{64-A)}}$ $\frac{1978-064}{\rightarrow \text { Ground track }}$ \rightarrow Star chart		Appears $\mathrm{h}: 18.0^{\circ}$ at Meridian $h: 85.4^{\circ}$ culmination distance: 7 elevation o isappears	19h54m13s 19h57m52s 19h57m58s 8.0 km hei Sun: -22 20h05m10s	4.9mag 3.1 mag 3.1 mag t above angular 7.0 mag	$\begin{aligned} & \text { az: } 28.5^{\circ} \\ & \text { az: } 0.0^{\circ} \\ & \text { az: } 300.3^{\circ} \\ & \text { Earth: } 75^{7} \\ & \text { velocity: } \\ & \text { az:211.90 } \end{aligned}$	NNE N WNW . 5 km 0.55 SSW	$\begin{aligned} & \text { h: s } \\ & \text { horizon } \end{aligned}$
(5)	20h04m23s	$\underline{\text { Cosmos }}$ $\underline{\underline{2297 \text { Rocket }}}$ $\underline{(23405}$ $\underline{\text { 1994-077-B) }}$ \Rightarrow Ground track \Rightarrow Star chart		ppears horizon isappears $\mathrm{h}: 47.9^{\circ}$	$19 \mathrm{~h} 56 \mathrm{~m} 21 \mathrm{~s}$ 20h04m23s	$\begin{aligned} & 6.9 \mathrm{mag} \\ & 3.1 \mathrm{mag} \end{aligned}$	$\begin{aligned} & \mathrm{az}: 334.1^{\circ} \\ & \mathrm{az}: 54.5^{\circ} \end{aligned}$	$\begin{aligned} & \text { NNW } \\ & \text { NE } \end{aligned}$	
58	20h22m43s	$\begin{aligned} & \frac{\text { Yaogan 9A }}{(36413} \\ & \frac{2010-009-\mathrm{A})}{\rightarrow \text { Ground track }} \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears horizon culmination $h: 52.0^{\circ}$ distance: 1 elevation at Meridian isappears	20h13m10s 20h22m43s 92.8 km he Sun: -26° 20h26m10s 20h27m17s	8.9 mag 5.3mag ht above angular 5.6 mag 5.9 mag	$\begin{aligned} & \text { az:316.60 } \\ & \text { az:239.0 } \\ & \text { e Earth: } 11 \\ & \text { velocity: } \\ & \text { az:180.0 } \\ & \text { az: } 173.5^{\circ} \end{aligned}$	NW WSW 46.1 0.29 S S	
(8)	20h22m52s	$\begin{aligned} & \frac{\text { Yaogan 9B }}{(36414} \\ & \frac{2010-009-B)}{\rightarrow \text { Ground track }} \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears horizon culmination h:49.9 ${ }^{\circ}$ distance: 14 elevation at Meridian isappears	20h13m20s 20h22m52s 25.1 km he Sun: -26° 20h26m38s 20h27m40s	8.9 mag 5.3mag ht abov angular 5.7 mag 6.0 mag	$\begin{aligned} & \text { az:316.40} \\ & \text { az:239.60 } \\ & \text { Earth: } 11 \\ & \text { velocity: } \\ & \text { az:180.0 } \\ & \text { az:174.4. } \end{aligned}$	NW WSW 46. 0.28 S S	
(3)	20h23m04s	$\begin{aligned} & \frac{\text { Yaogan 9C }}{(36415} \\ & \frac{2010-009-C)}{\rightarrow \text { Ground track }} \\ & \rightarrow \text { Star chart } \end{aligned}$		Appears horizon culmination h:51.90 distance: 1 elevation at Meridian isappears	20h13m30s 20h23m04s 93.9 km he Sun: -26° 20h26m31s 20h27m35s	8.9 mag 5.3mag ht above angular 5.6 mag 5.8 mag	$\begin{aligned} & \text { az:316.6º } \\ & \text { az:239.10} \\ & \text { E Earth: } 11 \\ & \text { velocity: } \\ & \text { az:180.0 } \\ & \text { az: } 173.7^{\circ} \end{aligned}$	NW WSW 46.3 0.29 S S	
(s)	20h29.6m	$2 \pm$ Jupiter-Moon Io		ccultation	sappearan	(I.Oc.	; 5.5 mag		

(3)	20h30.6m	Moon	First Quarter (diameter: 29.629', declination: 19.260) This is the 2nd smallest first quarter moon of the year. Next smaller first quarter moon is at 19.3.2013 (calculated for the geocenter) This is the 2nd northernmost first quarter moon of the year. Next more northern first quarter moon is at 19.3.2013 (calculated for the geocenter)
(3)	$20 h 37 \mathrm{~m} 22 \mathrm{~s}$	\rightarrow ISS	Appears horizon 20 h 34 m 22 s 2.1 mag $\mathrm{az}: 290.2^{\circ} \mathrm{WNW}$ Disappears $\mathrm{h}: 17.1^{\circ}$ 20 h 37 m 22 s -0.5 mag $\mathrm{az}: 294.8^{\circ} \mathrm{WNW}$

28 Items/Events: \otimes Export to Outlook/iCal回Print \triangle E-mail

Show glossary
\triangle Top

This material is ©1998-2013 by Arnold Barmettler (Imprint). Hard copies may be made for personal use only. No electronic copy may be located

Create new default account/Logout elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 19 February 201320 Feb 2013, 17:11 UTC
Database updated 9 min ago 598 minutes left for this session Current Users: 116 / Mode for our sponsors

