Intro｜Salendiar \mid Sun｜Moon｜Planets \mid Comets｜Asteroids｜Meteors｜Deep－Sky
 Astro－Calendar｜User Profile ．Space Weather ．Ocean Tides • Meteo ．
 $\mathrm{TcO}_{\text {Graphical Day\＆Night Calendar ．Weather Balloons • Islam．Prayer Times }}$

\rightarrow E－mail \＆Alert Manager
\rightarrow Nightvision－Mode
Select start of calculation：
Date： 5 March 2015 四

Select duration：
30 Minutes

The Calendar－Sky

The astronomical calendar contains thousands of events per day for every point on Earth．We know that you only care for a very few of these events and hence we let you personalize your own Astro－Calendar．You may primarily do so by switching to your appropriate user level，and by selecting some of the three dozens categories．

In parentheses are forced limits for the maximum calculation interval．The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go！－Button（depending on the complexity of your selections）．The calendar is created especially for you．The higher your user level，the more complex objects you selected，the longer it does take to calculate．Please do not press the reload－button；the calculations will take significantly longer．

Calendar and Timekeeping		General events	
			Lunar Occultations（2
	Space Calendar：		months）
\square	Birthdays，Rocket		Planetary
	Launches		Conjunctions
\square	Local Events（Talks， Exhibitions）	\square	Lunar Eclipses
	NASA TV Guide	\square	Solar Eclipses and Transits
\square	Local Telescope Dealers	\square	Meteor Showers
	Public Holidays	\square	Planetary Phenomena
\square	Saint＇s Day	回	Lunar Phenomena
－	Zodiac of today．		The Sun
	Change of Zodiac Islamic，Indian，		Asteroids（6 months）
\square	Persian and Hebrew Calendar	回	Comets
\square	Week Number		
	Sundials／GPS Time／ Current Time Definitions		
	Julian Day Number		
	Sidereal Time		
	Local Magnetic Field		

Earth orbiting satellites

Space Station ISS（1 month） short duration Flares
v of Iridium satellites （14 days）
Passes of other bright
v satellites（1 day， slow！）

Daily reoccurring events

Graphical night calendar
－Sun and Moon
－Planets
－Asteroids
－Comets
\square Meteor Showers
－Polar Star Transits
\square Weather Balloons

Dimmer and more	
difficult objects	
	Jupiter：Great Red
\square	Spot and satellite events \square
	Jupiter＇s Satellites： position
\square	Saturn：Satellite events and storms
\square	Saturn＇s Satellites： position
\square	Zodiacal light／Gegenschein
\square	Variable Stars（3 months）
\square	Supernovae
\square	Binary Stars
Deep sky objects	
\square	Star chart
\square	Milky Way
\square	Galaxies
\square	Open Star Clusters
\square	Globular Star Clusters
\square	Nebula

Thursday 5 March 2015

| Time（24－hour
 clock） | Object（Link） | Event |
| :--- | :--- | :--- | :--- |
| sser | Observer Site | bouvines，France
 WGS84：Lon：＋3d11m15．03s Lat：＋50d34m42．83s Alt：84m
 All times in CET or CEST（during summer） |

S	20h00m00s	Geosats flare season	Optimal day to observe flares from geostationary satellites! Geostationary satellites are usually very dim objects, comparable with Pluto. Today, some can get so bright for some minutes, that they can be seen with the unaided eye. Look for them at the optimal coordinates and time given below and with patience. The satellites will move slowly through the stellar field, about one or one cluster every 5 minutes. And the Geostationary satellites get totally eclipsed tonight. They disappear completely in the shadow of Earth at about the same spot on the celestial sphere one after the other, about one satellite or cluster every 5 minutes. With a little patience this can be easily observed through a smaller telescope. Umbral shadow eclipse: Satellites disappear at RA=11h01m Dec $=-6.9^{\circ}$ and reappear at $R A=11 \mathrm{~h} 50 \mathrm{~m}$ Dec $=-6.7^{\circ}$ Duration=47.8 minutes Penumbral eclipse: Satellites start fading at RA=10h58m Dec $=-6.9^{\circ}$, full brightness: RA=11h53m Dec=-6.7${ }^{\circ}$ Duration=53.8 minutes, duration of fading until total eclipse: 3.0 minutes Optimal coordinates to look for geostationary satellites at this time: $R A=10 \mathrm{~h} 58 \mathrm{~m}$ Dec $=-6.9^{\circ}$, $\mathrm{az}=107.4^{\circ} \mathrm{h}=5.2^{\circ}$ (Penumbra eclipse begin) The Sun is at $\operatorname{Dec}=-6.0^{\circ}$, flare angle $=1.8^{\circ}$ There is no optimal time to observe geostationary satellites. Observe them whenever you like during the night.
(3)	20h00m00s		
(3)	20h00m00s	$\begin{aligned} & \text { USA } \\ & 217 / \text { STPSat-2 } \\ & (37222 \\ & 2010-062-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appearshorizon Culmination 19h47m06s 9.3 mag $\mathrm{az}: 328.1^{\circ} \mathrm{NNW}$ $\mathrm{h}: 48.7^{\circ}$ distance: 838.9 km height above Earth: 652.3 km elevation of Sun: -13 angular velocity: $0.50^{\circ} / \mathrm{s}$ at Meridian 19h57m15s 6.9 mag $\mathrm{az}: 180.0^{\circ} \mathrm{S}$ $\mathrm{h}: 16.7^{\circ}$ Disappears 20h00m37s 8.1 mag $\mathrm{az}: 170.3^{\circ} \mathrm{S}$ horizon
5 5	20h00m00s	$\begin{aligned} & \text { Cosmos } 2278 \\ & \quad(23087 \\ & \text { 1994-023-A) } \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	
(3)	20h00m00s	```IGS 5 H2A Rocket (36105 2009-066-B) \rightarrow G r o u n d ~ t r a c k ->Star chart```	Appearsh:22.5 19h56m54s 3.8 mag az: $84.0^{\circ} \mathrm{E}$Culmination 19h57m41s 3.8 mag az: $64.5^{\circ} \mathrm{ENE}$$\mathrm{h}: 24.1^{\circ}$distance: 1127.2 km height above Earth: 537.2 km elevationof Sun: -14° angular velocity: $0.40^{\circ} / \mathrm{s}$

			at Meridian Disappears Time uncer	$\begin{aligned} & \text { 20h02m29s } \\ & \text { 20h03m15s } \\ & \text { inty of abo } \end{aligned}$	6.3 mag 6.6 mag t 2 seco	$\begin{aligned} & \text { az: } 0.0 \\ & \text { az: } 357.0 \\ & \text { nds } \end{aligned}$	$h: 3.0^{\circ}$ horizon
(3)	20h03m05s		Appears h: 22.5° Culmination h:26.1 ${ }^{\circ}$ distance: of Sun: -15 at Meridian Disappears	20h01m42s 20h03m05s 345.6 km he angular 20h08m08s 20h09m29s	4.1mag 4.0mag ght abov locity: 6.2mag 6.7 mag	$\begin{aligned} & \text { az: } 89.8 \\ & \text { az: } 62.1 \\ & \text { e Earth: } \\ & 0.33^{\circ} / \mathrm{s} \\ & \text { az: } 0.0 \\ & \text { az: } 354.8 \end{aligned}$	eleva h:5.1 ${ }^{\circ}$ horizon
(3)	20h06m12s	USA 2-3D $(23862$ 1996-029-D \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h: 40.4° distance: of Sun: -15 at Meridian Disappears	19h58m37s 20h06m12s 303.5 km he angular 20h07m25s 20h14m26s	10.4mag 6.4mag ght abov locity: 6.2mag 7.8 mag	$\begin{gathered} \text { az:254.1 } \\ \text { az:332.4 } \\ \text { e Earth: } \\ 0.34^{\circ} / \mathrm{s} \\ \text { az: } 0 . e \\ \text { az: } 47.2 \end{gathered}$	$\begin{aligned} & \text { h:36.6 } \\ & \mathrm{h}: 3.2^{\circ} \end{aligned}$
(3)	20h08m26s	USA \quad120/NOSS $2-3 C \quad$ $(23908$ $1996-029-C)$ \rightarrow Ground track \rightarrow Star chart	Appears horizon Culmination h:39.4 ${ }^{\circ}$ distance: of Sun: -16 at Meridian Disappears	20h00m50s 20h08m26s 336.1 km he angular 20h09m39s 20h16m37s	10.5 mag 6.5 mag ght abov locity: 6.3mag 7.8 mag	$\begin{aligned} & \text { az:255.5 } \\ & \text { az:333.4 } \\ & \text { e Earth: } \\ & 0.33^{\circ} / \mathrm{s} \\ & \text { az: } 0.0 \\ & \text { az: } 47.3^{\circ} \end{aligned}$	$\begin{aligned} & \text { h:35.9 } \\ & \mathrm{h}: 3.5^{\circ} \end{aligned}$
(3)	20h09m13s	```ERS-1 Rocket (21610 1991-050-F) \rightarrow \text { Ground track} ->Star chart```	Appears horizon at Meridian h:21.5 ${ }^{\circ}$ Culmination distance: of Sun: -16 Disappears	20h01m56s 20h05m55s 20h09m13s 837.1 km hei angular v 20h16m36s	6.8 mag 5.3mag 4.3mag ht above locity: 7.7mag	$\begin{gathered} a z: 171.8 \\ a z: 180.0 \\ \text { az:257.4 } \\ \text { Earth: } \\ 0.53^{\circ} / \mathrm{s} \\ a z: 343.2 \end{gathered}$	h: 64.7° elevat horizon
(5)	20h11m01s	```eCosmos 1980 Rocket (19650 1988-102-B) \rightarrow G \text { Ground track} ->Star chart```	Appears horizon at Meridian $\mathrm{h}: 14.3^{\circ}$ Culmination distance: of Sun: -16 Disappears	20h03m47s 20h08m12s 20h11m01s 876.8km he angular 20h12m59s	7.1 mag 5.3mag 4.4mag ght abov locity: 4.4mag	$\begin{gathered} \text { az:331.6 } \\ \text { az: } 0.0^{\circ} \\ \text { az: } 35.2^{\prime} \\ e \text { Earth: } \\ 0.22^{\circ} / \mathrm{s} \\ \text { az: } 61.2 \end{gathered}$	$\begin{gathered} h: 19.8^{\circ} \\ \text { h eleva } \\ h: 16.8^{\circ} \end{gathered}$
(5)	20h12m08s	U1/SBWASS USA R3/Singleton 3 $(21949$ 1992-023-A) \rightarrow Ground track \rightarrow Star chart	Appears horizon at Meridian h:5.7 ${ }^{\circ}$ Culmination distance: of Sun: -16 Disappears	20h04m33s 20h06m02s 20h12m08s 19.5km he angular 20h16m29s	8.3 mag 7.8 mag 4.9mag ght abov locity: 6.5 mag	$\begin{gathered} a z: 356.8 \\ \text { az: } 0.0 \\ \text { az: } 77.8^{8} \\ 0 \text { Earth: } \\ 0.41^{\circ} / \mathrm{s} \\ a z: 149.8 \end{gathered}$	$\begin{gathered} h: 48.4^{\circ} \\ \mathrm{n} \quad \text { eleva } \\ \mathrm{h}: \mathbf{1 4 . 1}^{\circ} \end{gathered}$
(3)	20h14m26s		Appears horizon Culmination $\mathrm{h}: 86.4^{\circ}$ distance:	20h04m17s 20h14m26s	8.1mag 3.7 mag ght abov	az:315.4 az:228.5 e Earth:	

		\rightarrow Star chart	elevation at Meridia Disappears	$\begin{array}{r} \text { f Sun: }-17 \\ 20 h 14 m 39 s \\ 20 h 21 m 26 s \end{array}$	angular 3.7 mag 5.2 mag	$\begin{aligned} & \text { velocity: } \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 141.3^{\circ} \end{aligned}$	$\begin{aligned} & 0.3 \\ & S \\ & S E \end{aligned}$	$\begin{aligned} & \circ / s \\ & h: 84.6^{\circ} \\ & h: 14.8^{\circ} \end{aligned}$
(3)	20h16m38s	$\begin{aligned} & \text { USA } 186 / \mathrm{KH} \\ & \quad(28888 \\ & 2005-042-\mathrm{A}) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears h: 36.8° Disappears horizon Time uncer	20h16m38s 20h19m56s inty of ab	4.7 mag 8.4mag 4 minu	$\begin{aligned} & a z: 355.7^{\circ} \\ & a z: 348.9^{\circ} \end{aligned}$	N N	
18	20h18m59s	$\begin{aligned} & \quad \text { Cosmos } 1743 \\ & \quad(16719 \\ & 1986-034-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon at Meridia $\mathrm{h}: 52.2^{\circ}$ Culmination distance: of Sun: -1 Disappears	20h12m57s 20h18m05s 20h18m59s 43.5 km he angular 20h25m06s	7.0 mag 3.8 mag 3.3 mag ht above ocity: 7.2 mag	$\begin{aligned} & \text { az: } 186.5^{\circ} \\ & \text { az: } 180.0^{\circ} \\ & \text { az: } 98.7^{\circ} \\ & \text { Earth: } 54 \\ & 0.83^{\circ} / \mathrm{s} \\ & \text { az: } 11.2^{\circ} \end{aligned}$	S S E .4km N	horizon
38	20h24m00s	$\begin{aligned} & \quad \begin{array}{l} \text { Cosmos } 2441 \\ \quad(33272 \\ 2008-037-A) \\ \rightarrow \text { Ground track } \\ \rightarrow \text { Star chart } \end{array} \end{aligned}$	Appears horizon at Meridia h:29.9 ${ }^{\circ}$ Culmination distance: of Sun: -18 Disappears	20h16m56s 20h21m38s 20h24m00s 59.6 km he angular 20h31m06s	6.6mag 4.7mag 3.9 mag t above ocity: 7.7 mag	$\begin{gathered} \text { az: } 170.4^{\circ} \\ \text { az: } 180.0^{\circ} \\ \text { az:257.4} \\ \text { Earth: } 72 \\ 0.58^{\circ} / \mathrm{s} \\ \text { az:344.8 } \end{gathered}$	S S WSW . 2 km NNW	horizon
(3)	20h27m14s	$\begin{aligned} & \quad \text { Cosmos } 1500 \\ & \quad(14372 \\ & 1983-099-A) \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \end{aligned}$	Appears horizon Culminatio $\mathrm{h}: 69.4^{\circ}$ distance: of Sun: -1 at Meridian Disappears	20h21m16s 20h27m14s 56.6 km he angular 20h29m16s 20h33m12s	7.6 mag 4.3mag ht above ocity: 5.7 mag 7.7 mag	az:194.4 ${ }^{\circ}$ az:281.5 ${ }^{\circ}$ Earth: 52 $0.81^{\circ} / \mathrm{s}$ az: 0.0° az: 8.8°	SSW WNW .9km N N	$h: 26.0^{\circ}$ horizon

17 Items/Events: Export to Outlook/iCal 㽞 Print E-mail
Used satellite data set is from 4 March 2015

- Hide glossary

Glossary:

Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

at Meridian

Time of the transit of the meridian, i.e. the satellite is due South or due North. At this time, the satellite will not reach its highest point of the pass. Look for culmination.

Azimuth/az

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is 90°, south 180°, and west 270°. The three-character direction code is given as well. For example, NNW stands for north north-west.

Culmination

Time at which the satellite reaches his highest point in the sky as seen from the observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

Dec., declination, DE

One coordinate used to indicate the position on the sky. It is the angular distance of the object from the celestial equator. North pole, close to Polaris, is 90° north.

Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low Earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

Duration

Duration of the umbral phase at the geographical point given (WGS84).

R.A., right ascension, RA

One coordinate used to indicate the position on the sphere. It is the angular distance of the object from the spring equinox measured along the celestial equator, expressed in hours of arc.

Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current time zone on the left of the Earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form, in order to correspond to the accuracy of the calculation: e.g., 10.1 h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at around 7 o'clock. The start time is taken as selected by you, i.e., this is not necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format (0h00m is midnight, 12h: noon, 18h: 6 pm.)

WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

Top

This material is ©1998-2015 by Arnold Barmettler (Imprint / Privacy policy / Disclaimers).
Hard copies may be made for personal use only. No electronic copy may be located
Create new default account/Logout elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions or comments, or plan to use results from CalSky in your publications or products, please contact us by e-mail. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.

Software Version: 20 March 2015
Database updated 29 min ago
Current Users: 410, Runtime: 2.2s

23 Mar 2015, 18:31 UTC
598 minutes left for this session ${ }^{1} /$ Mode for our sponsors

