$\rightarrow$ CalSky-Shop
You have not yet specified your observing site. You can do so $\rightarrow$ here, or using the menu entry "Intro", or by clicking the small Earth icon on the right side.

Select start of calculation:

| Date: 29 | April | 2010 | 葛 |
| :---: | :---: | :---: | :---: |
| Time: 21 | 28:53 |  | Now |
| Select duration: |  | 9 Hours |  |



## The Calendar-Sky

The astronomical calendar contains thousands of events per day for every point on earth. We know that you do care only for a very few of these events and hence we let you personalize your own astro-calendar. You may primarily do so by switching to your appropriate user level, and by selecting some of the three dozens categories.

In paranthesis are forced limits for the maximum calculation interval. The celestial calendar is to be found further below on this page and will appear within some seconds after pressing the Go!-Button (depending on the complexity of your selections). The calendar is created especially for you. The higher your user level, the more complex objects you selected, the longer it does take to calculate. Please do not press the reload-button; the calculations will take only significantly longer.

## Calendar and Timekeeping

## Space Calendar:

B Birthdays, Rocket Launches

- Local Events (Talks, Exhibitions)
- NASA TV Guide
- Local Telescope
- Dealers

I- Public Holidays

- Saint's Day
- Zodiac of today.
- Change of Zodiac Islamic, Indian,
$\square$ Persian and Hebrew Calendar
已 Week Number
Sundials / GPS
■ Time / Current Time Definitions


## General events

- Lunar Occultations (2 months)
- Planetary Conjunctions
ㅁ Lunar Eclipses
E Solar Eclipses and Transits
■ Meteor Streams
■ Planetary
Phenomena
- Lunar Phenomena
- The Sun
- Asteroids (6
- months)

E Comets

## Earth orbiting satellites

- Space Station ISS,
- Shuttle (1 month) shortduration
- Flares of Iridium satellites (2 days) passes of other
$\because \quad$ bright satellites (7 days, slow!)


## Daily reoccuring events

ㄷ Sun and Moon
ㅁ Planets

- Asteroids

므 Comets

- Meteor Streams

ㄱ Polar Star Transits

- Weather Balloons


## Dimmer and more difficult objects

$=$ Jupiter's Satellite:
Events
Jupiter's Satellite:
Position
Saturn's Satellites:
Events
Saturns's Satellite: Position

- Zodiacal light
- Variable Stars (3 months)
S Supernovae
ㄷ Binary Stars


## Deep sky objects

■ Milkyway

- Galaxies
$\square$ Open Star Clusters
Globular Star Clusters
$\square$ Julian Day Number
$\square$ Sidereal Time
Local Magnetic
Field
Thursday 29 April 2010

|  | Time | Object (Link) | Event |
| :---: | :---: | :---: | :---: |
| 3 |  | Observer Site | Paris, France <br> WGS84: Lon: +2d19m59.9s Lat: +48d52m00.1s Alt: 79m All times in CET or CEST (during summer) |
| 3 | 21h45m37s | $\frac{\text { Cosmos }}{2406}$Rocket <br> $\frac{(28353}{2004-021-B)}$ <br> $\rightarrow \rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| $\otimes$ | 21h46m27s | $\underline{\text { Yaogan } 1}$$\frac{\text { LM Rocket }}{(29093}$2006-015-B) <br> $\rightarrow$ Sround track <br> $\rightarrow$ Star chart |  |
| 5 | 21h46m51s | $\underline{2333}$$\frac{\text { Rocket }}{}$$\frac{(24298}{1996-051-B)}$$\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| * | 21h50m30s | Cosmos <br> Rocket <br> $\frac{(11601}{1163}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| 3 | 21h57m01s | $\frac{\text { UARS }}{(21701}$ $\frac{1991-063-\mathrm{B})}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  |
| 5 | 22h05m22s | $\begin{aligned} & \frac{\text { ADEOS } 2}{(27597} \\ & \frac{2002-056-\mathrm{A})}{\rightarrow \text { Ground track }} \\ & \rightarrow \text { Star chart } \end{aligned}$ | Appears 22h00m03s 4.7 mag az: $145.1^{\circ} \mathrm{SE}$ <br> $\mathrm{h}: 9.0^{\circ}$    <br> Culmination 22 h 05 m 22 s 3.1 mag az: $69.0^{\circ} \mathrm{ENE}$ <br> $\mathrm{h}: 53.4^{\circ}$    <br> distance: 980.6 km height above Earth: 811.3 km  <br> elevation of sun: $-10^{\circ}{ }^{\circ}$   <br> Disappears 22 h 12 m 53 s 7.5 mag az:349.7 |
| $\otimes$ | 22h14m18s | USA$\frac{\text { U2 Lacrosse } 5}{}$28646 <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |




|  |  | $\frac{\frac{2002-021-B)}{\rightarrow \text { Ground track }}}{\frac{\rightarrow \text { Star chart }}{\rightarrow}}$ |  |
| :---: | :---: | :---: | :---: |
| 5 | 23h55m33s | *2. Iridium 43 | Flare from MMA1 (Right antenna) Magnitude= 0.7 mag <br> Azimuth $=32.6^{\circ}$ NNE altitude $=17.5^{\circ}$ in constellation Cygnus <br> Flare angle $=1.60^{\circ}$ <br> Flare center line, closest point $\rightarrow$ MapIt: <br> Longitude $=1.081^{\circ} \mathrm{E}$ Latitude $=+48.990^{\circ}$ (WGS84) <br> Distance $=92.4 \mathrm{~km}$ Azimuth=279.0 ${ }^{\circ} \mathrm{W}$ <br> Satellite above: longitude $=17.7^{\circ} \mathrm{E}$ latitude $=+61.3^{\circ}$ <br> height above Earth=786.8 km distance to <br> satellite $=1951.0 \mathrm{~km}$ <br> Altitude of sun=-21.8 ${ }^{\circ}$ |
| 5 | 23h56m31s | 182/Lacrosse 5(28646 <br> 2005-016-A) <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart USA | Appears 23 h 49 m 08 s 5.7 mag $\mathrm{az}: 229.3^{\circ}$ SW <br> horizon 23 h 56 m 31 s 2.3 mag $\mathrm{az}: 142.3^{\circ}$ SE <br> Culmination <br> $\mathrm{h}: 81.7^{\circ}$     <br> distance: 724.1 km height above Earth: 717.3 km     <br> elevation of sun: $-22^{\circ}$     <br> Disappears 0 h 03 m 58 s 6.0 mag $\mathrm{az}: 55.6^{\circ} \mathrm{NE}$ horizon  |
| 3 | 23h56m45s | $\begin{aligned} & \underline{\psi}: \frac{\text { USA }}{182 / \text { Lacrosse }} \\ & \underline{5} \end{aligned}$ | Flare from SAR antenna Magnitude= 0.9mag Azimuth $=100.3^{\circ} \mathrm{E} \quad$ altitude $=78.8^{\circ}$ in constellation Canes Venatici <br> Flare angle $=12.35^{\circ}$ <br> Flare center line, closest point $\rightarrow$ MapIt: <br> Longitude $=3.592^{\circ} \mathrm{E}$ Latitude $=+47.736^{\circ}$ (WGS84) <br> Distance $=156.4 \mathrm{~km}$ Azimuth $=143.0^{\circ} \mathrm{SE}$ <br> Satellite above: longitude $=4.0^{\circ} \mathrm{E}$ latitude $=+48.6^{\circ}$ <br> height above Earth=717.5 km distance to satellite $=729.4 \mathrm{~km}$ <br> Altitude of sun=-21.9 ${ }^{\circ}$ <br> This is an experimental flare prediction. Brightness estimate may be unreliable. Please report a successful observation (Object/site coordinates/date/measured time/accuracy/magnitude). |

Friday 30 April 2010

|  | Time | Object (Link) | Event |
| :---: | :---: | :---: | :---: |
| 3 | 0h03m54s | RDEOS 2 $\frac{\text { Rocket }}{}$ $\frac{(27601}{2002-056-E)}$ $\rightarrow \rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 5 | 0h07m53s | $\frac{\text { Lacrosse } 5}{\text { Rocket }}$ <br> $\frac{\text { (28647 }}{\text { 2005-016-B) }}$ <br> 2Ground track <br> $\rightarrow$ Star chart |  |
| 3 | 0h16m16s | $\underset{\substack{\text { ISS } \\ \rightarrow \text { Ground track }}}{\rightarrow \text { Star chart }}$ | Appears <br> horizon 0 h 14 m 02 s 0.1 mag $\mathrm{az}: 264.4^{\circ} \mathrm{W}$ <br> Disappears <br> $\mathrm{h}: 11.5^{\circ}$ 0 h 16 m 16 s -1.1 mag $\mathrm{az}: 270.1^{\circ} \mathrm{W}$ |
| 5 | 0h18m25s | $\frac{\text { Cosmos }}{2455}$ $\frac{(36095}{2009-063-A)}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 8 | 0h25m24s | $\frac{\text { Cosmos }}{1953}$ $\frac{(19210}{1988-050-A)}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 5 | 0h27m11s | $\underline{\text { Helios 1B }}$ $\underline{\text { Rocket }}$ $\frac{(25979}{1999-064-C)}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 8 | 1h28m31s | $\underline{\text { NOSS 3-1 }}$ $\frac{(\mathrm{C})}{(26907}$ $\frac{2001-040-\mathrm{C})}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart |  |
| $\otimes$ | 1h28m38s | $\frac{\text { NOSS 3-1 }}{(\mathrm{A})}$ $\frac{(26905}{2001-040-\mathrm{A})}$ $\frac{\rightarrow \text { Ground track }}{\rightarrow \text { Star chart }}$ | Appears <br> $\mathrm{h}: 42.5^{\circ}$ 1 h 28 m 34 s 4.7 mag az: $119.7^{\circ} \mathrm{ESE}$ <br> Culmination 1 h 28 m 38 s 4.7 mag az: $118.3^{\circ} \mathrm{ESE}$ <br> $\mathrm{h}: 42.5^{\circ}$    <br> distance: 1436.7 km height above Earth: 1046.7 km  <br> elevation of sun: $-26^{\circ}$    <br> Disappears 1 h 37 m 51 s 8.5 mag az: $44.4^{\circ} \mathrm{NE}$ horizon |
| 5 | 1h39m48s | USA <br> $\frac{182 / \text { Lacrosse } 5}{}$ <br> $\frac{(28646}{2005-016-A)}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart | Appearshorizon1h32m33s $\quad 5.9 \mathrm{mag}$ az:266.2 ${ }^{\circ} \mathrm{W}$, |
| ) | 3h01m53s | $\begin{aligned} & \text { USA } \\ & \frac{81 \text { SBWASS }}{\text { R } 3 / \text { Singlettn } 3} \end{aligned}$ | Appears <br> h:65.4 3 h 01 m 07 s 4.6 mag az:203.8 <br> $\circ$ <br> Culmination <br> h.on $10^{\circ}$ 3 SSW m 53 s 4.6 mag az:276.0 |


|  |  | $\left\lvert\, \begin{aligned} & \frac{(21949}{1992-023-A)} \\ & \rightarrow \text { Ground track } \\ & \rightarrow \text { Star chart } \\ & \hline \end{aligned}\right.$ | distance: 804.4 km height above Earth: 797.6 km <br> elevation of sun: -24 ${ }^{\circ}$ <br> Disappears 3 h 09 m 36 s 10.4mag az: $5.9^{\circ} \mathrm{N}$ horizon |
| :---: | :---: | :---: | :---: |
| * | 3h14m37s | $\frac{\text { Seasat }}{(10967}$ $\frac{1978-064-\mathrm{A})}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart | Appears 3 h 12 m 13 s 4.2 mag $\mathrm{az}: 133.3^{\circ} \mathrm{SE}$ <br> $\mathrm{h}: 30.5^{\circ}$    <br> Culmination 3 h 14 m 37 s 3.4 mag az: $57.0^{\circ} \mathrm{ENE}$ <br> $\mathrm{h}: 70.8^{\circ}$    <br> distance 800.0 km height above Earth: 760.3 km  <br> elevation of sun: $-24^{\circ}$    <br> Disappears 3 h 21 m 52 s 7.4 mag $\mathrm{az}: 332.8^{\circ} \mathrm{NNW}$ horizon |
| $\otimes$ | 3h19m22s | $\frac{\text { NOSS 3-1 }}{(\mathrm{C})}$ $\frac{(26907}{2001-040-\mathrm{C})}$ $\frac{\Rightarrow \text { Ground track }}{\rightarrow \text { Star chart }}$ |  |
| * | 3h19m28s | $\frac{\text { NOSS 3-1 }}{(A)}$ $\frac{(26905}{2001-040-A)}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 5 | 3h20m04s | $\underline{\text { GOSAT }}$$\underline{\text { Rocket }}$$\frac{(33500-02-J)}{2009-002 \text { J })}$$\rightarrow$ Gtound track <br> $\rightarrow$ Start | Appears <br> $\mathrm{h}: 35.7^{\circ}$ <br> Disappears <br> horizon 3 h 20 m 04 s 3.2 mag $\mathrm{az}: 278.3^{\circ} \mathrm{W} 13 \mathrm{~s}$ |
| * | 3h23m39s | USA $\frac{182 / \text { Lacrosse } 5}{(28646}$ $\frac{2005-016-A)}{\rightarrow \text { Ground track }}$ $\rightarrow \rightarrow$ Star chart |  |
| * | 3h29m05s | Cosmos <br> $\frac{\text { Rocket }}{2082}$ <br> $\frac{(20625}{(990-046-B)}$ <br> (Ground track <br> $\rightarrow$ Star chart | Appears 3 h 27 m 30 s 3.0 mag $\mathrm{az}: 230.3^{\circ} \mathrm{SW}$ <br> $\mathrm{h}: 47.6^{\circ}$    <br> Culmination 3 h 29 m 05 s 2.9 mag $\mathrm{az}: 300.0^{\circ} \mathrm{WNW}$ <br> $\mathrm{h}: 72.8^{\circ}$    <br> distance: 880.8 km height above Earth: 846.4 km   <br> elevation of sun: $-23^{\circ}$    <br> Disappears 3 h 37 m 12 s 9.0 mag $\mathrm{az}: 27.9^{\circ} \mathrm{NNE}$ horizon |
| * | 3h34m18s | $\quad \underline{\text { Cosmos }}$ $\frac{\text { Rocket }}{}{ }^{\frac{(1980}{2}}$ $\frac{19850-102-B)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart | Appears 3 h 26 m 11 s 7.0 mag $\mathrm{az}: 332.4^{\circ} \mathrm{NNW}$ <br> horizon    <br> Culmination 3 h 34 m 18 s 3.2 mag az: $58.9^{\circ} \mathrm{ENE}$ <br> $\mathrm{h}: 67.3^{\circ}$    <br> distance: 905.4 km height above Earth: 843.8 km   <br> elevation of sun: $-22^{\circ}$    <br> disappears 3 h 39 m 55 s 5.1 mag az:142.1 |
| * | 3h39m05s | Part 2 <br> $\frac{\text { Rocket } 125}{}$ <br> $\frac{(23947}{1996-038-C)}$ <br> $\frac{\rightarrow \text { Ground track }}{\rightarrow \text { Star chart }}$ |  |
|  | 3h48m49s | $\frac{\text { Cosmos }}{1697}$ | Appears 3 h 40 m 45 s 7.3 mag <br> horizon   <br> Culmination $3 \mathrm{az}: 33 \mathrm{~m} 49 \mathrm{~s}$ $3.2{ }^{\circ} \mathrm{NNW}$ <br>  3.2 mag $\mathrm{az:244.9}^{\circ} \mathrm{wSW}$ |


|  |  | $\begin{aligned} & \frac{\text { Rocket }}{(16182} \\ & \frac{1985-097-B)}{\rightarrow \text { Ground track }} \\ & \frac{\rightarrow \text { Star chart }}{} \end{aligned}$ | $\mathrm{h}: 77.0^{\circ}$ distance: 862.4 km height above Earth: 843.0 km elevation of sun: $-21^{\circ}$ Disappears $3 \mathrm{~h} 52 \mathrm{~m} 11 \mathrm{~s} \quad 4.5 \mathrm{mag}$ az:162.8 $8^{\circ}$ SSE $\mathrm{h:25.1}^{\circ}$ |
| :---: | :---: | :---: | :---: |
| 5 | 4h02m02s | $\frac{\text { Cosmos }}{2322}$ <br> $\frac{\text { Rocket }}{}$ <br> $\frac{(23705}{1995-058-B)}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart | Appears 3 h 53 m 49 s 6.8 mag $\mathrm{az}: 331.0^{\circ} \mathrm{NNW}$  <br> horizon     <br> Culmination 4 h 02 m 02 s 2.8 mag $\mathrm{az}: 243.0^{\circ} \mathrm{WSW}$  <br> $\mathrm{h}: 88.8^{\circ}$     <br> distance: 860.0 km height above Earth: 860.0 km     <br> elevation of sun: $-20^{\circ}$     <br> Disappears 4 h 08 m 31 s 5.3 mag $\mathrm{az}: 154.5^{\circ}$ SSE <br> $\mathrm{h}: 6.5^{\circ}$     |
| 5 | 4h15m59s | * Iridium 49 | ```Flare from MMAO (Front antenna) Magnitude=-3.3mag Azimuth=114.3' ESE altitude= 26.6}\mp@subsup{}{}{\circ}\mathrm{ in constellation Delphinus Flare angle=0.61' Flare center line, closest point }->\mathrm{ MapIt: Longitude=2.769* E Latitude=+48.855' (WGS84) Distance=31.9 km Azimuth= 92.1' }\mp@subsup{}{}{\circ}\textrm{E Satellite above: longitude=15.7 }\mp@subsup{}{}{\circ}\textrm{E}\mathrm{ latitude=+43.8 height above Earth=783.0 km distance to satellite=1469.5 km Altitude of sun=-18.5``` |
| 65 | 4h22m35s | */4. Iridium 11 | Flare from MMAO (Front antenna) <br> Magnitude=-5.2mag <br> Azimuth=114.7 $7^{\circ}$ ESE altitude $=28.3^{\circ}$ in <br> constellation Delphinus <br> Flare angle $=0.33^{\circ}$ <br> Flare center line, closest point $\rightarrow$ MapIt: <br> Longitude=2.536 E Latitude $=+48.864^{\circ}$ (WGS84) <br> Distance=14.8 km Azimuth= $91.3^{\circ} \mathrm{E}$ <br> Satellite above: longitude=14.3 ${ }^{\circ} \mathrm{E}$ latitude=+44.3${ }^{\circ}$ <br> height above Earth=715.0 km distance to <br> satellite $=1308.6 \mathrm{~km}$ <br> Altitude of sun=-17.8 ${ }^{\circ}$ <br> This is a spare satellite or its status is unknown. <br> Brightness estimate may be unreliable and flare time accurate to a few seconds. |
| 59 | 4h32m25s | $\frac{\text { NOSS 3-2 }}{(\mathrm{A})}$ $\frac{(28095}{2003-054-\mathrm{A})}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 53 | 4h32m30s | $\frac{\text { NOSS 3-2 }}{(\mathrm{C})}$ $\frac{(28097}{2003-054-C)}$ $\rightarrow$ Ground track $\rightarrow$ Star chart |  |
| 69 | 5h07m15s | $\frac{182 / \text { Lacrosse } 5}{}$ <br> $\frac{(28646}{2005-016-A)}$ <br> $\rightarrow$ Ground track <br> $\rightarrow$ Star chart |  |
| \$ | $5 \mathrm{~h} 08 \mathrm{m03s}$ | $\psi_{\underline{5}} \frac{\frac{\text { USA }}{182 / \text { Lacrosse }}}{}$ | Flare from SAR antenna Magnitude=-0.0mag Azimuth $=74.6^{\circ}$ ENE altitude= $55.1^{\circ}$ in constellation Cygnus <br> Flare angle $=3.80^{\circ}$ <br> Flare center line, closest point $\rightarrow$ MapIt: |


|  |  |  | Longitude $=2.793^{\circ} \mathrm{E}$ Latitude $=+49.332^{\circ}$ (WGS84) <br> Distance $=61.6 \mathrm{~km}$ Azimuth $=32.7^{\circ}$ NNE <br> Satellite above: longitude $=8.1^{\circ} \mathrm{E}$ latitude $=+49.8^{\circ}$ <br> height above Earth $=720.0 \mathrm{~km}$ distance to satellite=852.3 km <br> Altitude of sun=-12.6 ${ }^{\circ}$ <br> This is an experimental flare prediction. Brightness estimate may be unreliable. Please report a successful observation (Object/site coordinates/date/measured time/accuracy/magnitude). |
| :---: | :---: | :---: | :---: |
| 5 | 5h11m36s | $\frac{\text { Resurs }}{\text { DK-1 }}$$\frac{(29228}{}$2006-021-A) <br> $\rightarrow$ GTound track <br> $\rightarrow$ Star chart | Appears 5 h 09 m 30 s 3.9 mag az: $196.3^{\circ} \mathrm{SSW}$ <br> $\mathrm{h}: 17.5^{\circ}$    <br> Culmination    <br> $\mathrm{h}: 64.8^{\circ}$ 5 h 11 m 36 s 2.6 mag $\mathrm{az}: 117.0^{\circ} \mathrm{ESE}$ <br> distance: 416.9 km height above Earth: 379.7 km   <br> elevation    <br> ofsun: $-12^{\circ}$    <br> isappears 5 h 16 m 46 s 9.1 mag $\mathrm{az}: 32.4^{\circ} \mathrm{NNE}$ horizon |
| 58 | 5h24m07s | $\frac{\text { Eutelsat }}{\text { W7 Tk }}$ $\frac{(36103}{2009-065-C)}$ $\underset{\rightarrow}{\rightarrow \text { Ground track }} \rightarrow$ Star chart |  |
| 58 | 5 h 28 ml 17 s | $\underline{\text { Cosmos }}$ $\frac{2428}{(31792}$ $\frac{2007-029-A)}{\rightarrow \text { Ground track }}$ $\rightarrow$ Star chart | Appears 5 h 20 m 10 s 6.8 mag $\mathrm{az}: 328.6^{\circ} \mathrm{NNW}$ <br> horizon <br> Culmination <br> $\mathrm{h}: 56.8^{\circ}$ 5 h 28 m 17 s 3.5 mag az: $248.5^{\circ} \mathrm{WSW}$ <br> distance: <br> elevation 1006.8 km of height above Earth: 863.1 km   <br> Disappears 5 h 36 m 19 s 6.3 mag $\mathrm{az}: 167.9^{\circ} \mathrm{SSE}$ horizon |
| 58 | 5h55m17s | $\begin{aligned} & \frac{\text { Resurs 1-3 }}{\text { Rocket }} \\ & \frac{(23343}{\frac{1994-074-B)}{\rightarrow \text { Ground track }}} \\ & \rightarrow \text { Star chart } \end{aligned}$ |  |

> 59 Items/Events: Export to Outlook/iCal
> Used satellite data set is from 1 May 2010 $\quad \begin{gathered}\text { Print }\end{gathered}$
$\square$ Hide glossary

## Glossary:

## Altitude/alt/h

Angular separation of the object from the local mathematical horizon. This accounts for refraction as well.

## Appears

Local time at which the satellite appears visually. The first figure indicates the visual brightness of the object. The smaller the number, the brighter and more eye-catching it appears to an observer. The units are astronomical magnitudes [m]. Azimuth is given in degrees counting from geographic north clockwise to the east direction. The three-character direction code is given as well. In case the satellite exits from the Earth shadow and comes into the glare of the Sun, the elevation above horizon is given in degrees for this event. If this figure is omitted, the satellite is visible straight from the horizon.

## Azimuth/az \}

Azimuth direction of the object is given in degrees counting from geographic north $\left(0^{\circ}\right)$ clockwise to the east direction. East is $90^{\circ}$, south $180^{\circ}$, and west $270^{\circ}$. The three-character direction code is given as well. For example, NNW stands for north-north-west.



## Culmination

Time at which the satellite reaches his highest point in the sky as seen
from the observer. For description of the figures see Appears.
Visually "better" passes of satellites are indicated by highlighting the information. The selection within the list of all possible transits is coupled with the observer level, the daylight, and several other conditions.

## Disappears

Local time of visual disappearance of the satellite. This may either be the time at which the satellite moves below the observer's horizon or the entry of the object in the shadow of Earth (the elevation is given for this event). The low earth orbiting (LEO) satellites are usually visible for about 10 seconds more than the listed time, when they start fading rapidly.

## Flare angle

The angle between the direction of the mirrored image of the sun and the observer. For bright flares, this angle must be as small as possible (i.e. the observer should be as close to the center line as possible).
Flare
The communication antennas and the solar panels reflect the sunlight almost as a perfect mirror. In case the observer lays within this reflected beam, the satellite suddenly appears very bright, as bright as the moon in the first quarter; the light is even strong enough to cast shadows. Since the sunlight is bundled, the duration of the whole event is short, and lasts about 10 seconds. The indicated time is the center of the flare event; hence the satellite can be spotted some seconds earlier. Due to the shortness of the event, it is important to look in the right direction at the right time.

## International Space Station ISS

The manned ISS is according to NASA the biggest and most complex scientific project in history. During twilight passed, the space station is easily seen by everyone as a strikingly bright and silently running star. It crosses the sky in a few minutes basically from west to east.

## Iridium

Wireless worldwide communication system, which consists of 66 satellites, that are in low earth orbits. The user who has a rather small phone directly contacts one of the satellites, i.e. one of the three Main Mission Antennas MMA (the three panels in the bottom of the image with a size of about $1 \times 2 \mathrm{~m}^{2}$ ). The satellites constellation consists of 6 planes with 11 satellites each (and some spares). Hence, another Iridium satellite passes at about the same place in the sky every 8 minutes.

## Magnitude/Mag

Brightness of an object considered as a point source of light, on a logarithmic scale. Visual limiting magnitude is about 6 mag , whereas the brightest star Sirius reaches -1.4 mag . The Hubble Space Telescope can image objects as dim as 29mag.

## Sat above

Geographic coordinates of the sub-satellite point (in WGS84 coordinates). This is the point on Earth, from which the satellite is in the zenith at the indicated time. The altitude of the satellite from this point is given as "alt".

## Spare satellite or unknown status

Not all Iridium satellites are operational. Some of them are spare satellites and are in a fuel save mode. Hence the attitude of the satellite is not as strictly stabilized as for operational ones. Predictions of the flare's brightness are not that accurate in this case, a no-show is also possible.

## Time and Date

Date of validity of calculated output in local time and date, taking into account daylight saving time as well (see the current timezone on the left of the earth icon on top right of almost all pages). The time is given as hours:minutes:seconds, or 00 h 00 m 00 s . The time may also be rounded and given in decimal form: e.g. 10.1h means that the event will take place at about 5 minutes past 10 o'clock. This may also happen for days: 4.3 d corresponds to the fourth day at arond 7 o'clock. The start time is taken as selected by you, i.e. this is not
necessarily at midnight. For intervals shorter than one day, decimal days are given. Times are given in 24 hour format ( 0 h 00 m is midnight, 12 h : noon, $18 \mathrm{~h}: 6 \mathrm{pm}$ )

## WGS84 / Geographical Coordinates

Geographical coordinates are given by the angles longitude (Lon), latitude (Lat), and altitude in meters (Alt). A place north of the equator at marked by N or + , places south of the equator by S or - . The longitude from the meridian of Greenwich is counted positive towards east (E). Places west from Greenwich are marked W or by -. The geographical coordinates refer to an ellipsoid, which fits the true shape of the Earth (geoid). The geoid corresponds to calm sea surface. The keyword "Geographic:" uses the local ellipsoid as reference system. WGS84 mark coordinates referring to the WGS84 ellipsoid. The difference in altitude to the geoid sums up to 100 meters and is called geoid undulation. This is corrected for when tagged "MSL" (mean sea level), such that the origin of the height system is at sea level.

## Top

This material is © 1998-2010 by Arnold Barmettler. Hard copies may be made for personal use only. No electronic copy may be located elsewhere for public access. All pages are dynamically generated. The usage of web copy tools is strictly prohibited. Commercial usage of the data only with written approval by the author. If you have any questions Create new default account/Login or comments, or plan to use results from CalSky in your publications or products, please contact us by email. Credits. Dieser Service wird in der Schweiz entwickelt und betrieben; Sie können uns auch gerne auf Deutsch schreiben.


